

University of Technology

 ةیجولونكتلا ةعماجلا

Computer Science Department
 بوساحلا مولع مسق

Data compression
 تانایبلا طغض

Dr. Abdul Ameer Abuallah
 الله دبع ریملأا دبع .د.أ

Assistant Lecturer Zainab A. Yakoob
 بوكعی يلع بنیز .م.م

cs.uotechnology.edu.iq

Data Compression Introduction

 Introduction to Data Compression
1. Previe

Data compression has been pushed to the forefront of the computer
science field. This is largely a result of the rapid growth in the multimedia
market, and the advent of the World Wide Web, which makes the internet
easily accessible for everyone.

Data compression addresses the problem of reducing the amount of
data required to represent a digital file, so that it can be stored or
transmitted so efficiently.

The principle of data compression is that, it compresses data by
removing redundancy from the original data in the source file.

On the other hand, information theory tells us that the amount of
information conveyed by an event relates to its probability of occurrence.
An event that is less likely to occur is said to contain more information than
an event that is more likely to occur. The amount of information of an event
and its probability are thus opposite.

Amount of information probability compression probability

It is obvious that information theory is the base theory that data
compression rely on.

 The problem of representing the source alphabet symbols Si in term of
another system of symbols (usually the binary system consisting of the two
symbols 0 & 1) is the main topic of coding theory.

An optimum coding scheme will use more bits for the symbols that
less likely to occur, and a fewer bits for the symbols that frequently occur.

 Logically speaking, coding theory leads to information theory and
information theory provides the bounds on what can be done by suitable
encoding of the information. Thus the two theories are intimately related.

2

Data Compression Introduction

Before delivering into the details, we discuss important data
compression terms:

2. Data Compression Terminology

Data compression is the process of converting an input data stream (the

source stream or the original raw data) into another data stream (the output,

or the compressed, stream) that has a smaller size. A stream is either a file or

a buffer in memory. Data compression is popular because of two reasons:

 1. People like to accumulate data and hate to throw anything away. No

matter how big a storage device one has, sooner or later it is going to

overflow. Data compression seems useful because it delays this inevitability.

2. People hate to wait a long time for data transfers. When sitting at the

computer, waiting for a Web page to come in, or for a file to download, we

naturally feel that anything longer than a few seconds is a long time to wait.

There are many known methods for data compression. They are based on

different ideas, are suitable for different types of data, and produce different

results, but they are all based on the same principle, namely, they compress

data by removing redundancy from the original data in the source file. Any

nonrandom collection data has some structure, and this structure can be

exploited to achieve a smaller representation of the data, a representation

where no structure is discernible.

The idea of compression by reducing redundancy suggests the general

law of data compression, which is to "assign short codes to common events

(symbols or phrases) and long codes to rare events." There are many ways

to implement this law, and an analysis of any compression method shows

that, deep inside, it works by obeying the general law.

3

Data Compression Introduction

Type of Redundancy

1. Text redundancy :

• In typical English text, for example, the letter E appears very

often, while Z is rare. This is called alphabetic redundancy, and

suggests assigning variable-size codes to the letters, with E

getting the shortest code and Z, the longest one.

• Another type of redundancy, contextual redundancy, is

illustrated by the fact that the letter Q is almost always followed

by the letter U (i.e., that certain diagrams and trigrams are more

common in plain English than others).

2. Images redundancy is illustrated by the fact that in a nonrandom

image, adjacent pixels tend to have similar colors.

3. Video redundancy is illustrated by the fact that in a nonrandom video

consecutive frame tend to be similar.

The principle of compressing by removing redundancy also answers the

following question: "Why is it that an already compressed file cannot be

compressed further?" The answer, of course, is that such a file has little or

no redundancy, so there is nothing to remove. An example of such a file is

random text. When such a file is compressed, there is no redundancy to

remove. If we assume that there was a possibility to compress an already

compressed file, then successive compressions would reduce the size of the

file until it becomes a single byte, or even a single bit. This, of course, is

ridiculous since a single byte cannot contain the information present in an

arbitrarily large file.)

4

Data Compression Introduction

Data compression is achieved by reducing redundancy, but this also

makes the data less reliable, more prone to errors. Making data more

reliable, on the other hand, is done by adding check bits and parity bits, a

process that increases the size of the codes, thereby increasing redundancy.

Data compression and data reliability are thus opposites.

Before delving into the details, we discuss important data compression

terms.

• The compressor or encoder is the program that compresses the raw

data in the input stream and creates an output stream with compressed (low-

redundancy) data. The decompressor or decoder converts in the opposite

direction.

• The term "stream" is used throughout these lectures instead of "file".

"Stream" is a more general term because the compressed data may be

transmitted directly to the decoder, instead of being written to a file and

saved. Also, the data to be compressed may be downloaded from a network

instead of being input from a file.

• For the original input stream we use the terms un encoded, raw data.

The contents of the final, compressed, stream is considered the encoded or

compressed data. The term bit stream is also used in the literature to

indicate the compressed stream.

3. Type of Data Compression

• A non adaptive compression method is rigid and does not modify its

operations, its parameters, or its tables in response to the particular data

being compressed. Such a method is best used to compress data that is all

of a single type. Examples are the Group 3 and Group 4 methods for

facsimile compression. They are specifically designed for facsimile

5

Data Compression Introduction

compression and would do a poor job compressing any other data. In

contrast, an adaptive method examines the raw data and modifies its

operations and/or its parameters accordingly. An example is the adaptive

Huffman method. Some compression methods use a 2-pass algorithm,

where the first pass reads the input stream to collect statistics on the data to

be compressed, and the second pass does the actual compressing using

parameters set by the first pass. Such a method may be called semi

adaptive.

• Lossy / lossless compression: Certain compression methods are lossy.

They achieve better compression by losing some information. When the

compressed stream is decompressed, the result is not identical to the

original data stream. Such a method makes sense especially in compressing

images, movies, or sounds. If the loss of data is small, we may not be able

to tell the difference. In contrast, text files, especially files containing

computer programs, may become worthless if even one bit gets modified.

Such files should be compressed only by a lossless compression method,

also special purpose images like medical images, forensic images, NASA

images are compressed using lossless compression methods.

• Symmetrical compression is the case where the compressor and

decompressor use basically the same algorithm but work in "opposite"

directions. Such a method makes sense for general work, where the same

number of files is compressed as are decompressed. In an asymmetric

compression method either the compressor or the decompressor may have

to work significantly harder (i. e. each one uses a different algorithm).

6

Data Compression Introduction

4. Benefits of data compression

The digital representation of the data usually required a very large
number of bits. In many applications, it is important to consider techniques
for representing data with fewer bits, while maintaining an acceptable
fidelity of data quality.

The main benefits of data compression are the follow :

1. Reducing the storage requirement or saving the storage space.
2. Potential cost saving associated with sending less data over

communication channels (e.g. the cost of call is usually depend on
its duration).

3. Compression can reduce the probability of transmission error
occurring since fewer characters are transmitted when data is
compressed.

4. By converting the original data that is represented by conventional
code into a different (compressed) code, compression algorithms may
provide a level of security.

5. Reducing the time required for transmission of the total original
image by transmitting its compressed version.

5. Compression Performance

Most compression methods are physical. They look only at the bits in
the input stream and ignore the meaning of the data items in the input (e.g.,
the data items may be words, pixels, or sounds). Such a method translates
one bit stream into another, shorter, one. The only way to make sense of the
output stream (to decode it) is by knowing how it was encoded.

Compression Factor

Data compression involves reducing the size of data file, while retaining
necessary information. The reduced file is called the compressed file and is
used to reconstruct the original file, resulting in the decompressed file. The
original file, before any compression is performed is called the

7

Data Compression Introduction

uncompressed file. The ratio of the original, uncompressed file and the
compressed file is referred to as the compression factor. The compression
factor is denoted by:

 Compression Factor = 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑛𝑝𝑢𝑡 𝑠𝑡𝑟𝑒𝑎𝑚
𝑠𝑖𝑧𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑜𝑢𝑡𝑝𝑢𝑡 𝑠𝑟𝑒𝑎𝑚

 = 𝑈𝑛𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑓𝑖𝑙𝑒 𝑠𝑖𝑧𝑒
𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑓𝑖𝑙𝑒 𝑠𝑖𝑧𝑒

 = 𝑠𝑖𝑧𝑒𝑈
𝑠𝑖𝑧𝑒𝐶

It is often written as sizeU : sizeC.

In this case value greater than 1 indicates compression, and values less
than 1 imply expansion. This measure seems natural to many people, since
the bigger the factor, the better the compression.

Example 1

The original image is 256 × 256 pixel. Single-band (gray scale) 8 bits
per pixel. This file size is 65,536 byte (64 k). After compression the image
file size is became 6,554 bytes. Compute the compression Factor.

Sol

Compression Factor = 𝑈𝑛𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑓𝑖𝑙𝑒 𝑠𝑖𝑧𝑒
𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑓𝑖𝑙𝑒 𝑠𝑖𝑧𝑒

=65536
6554

 = 9.9999 = 10

This can also be written as 10:1.

This is called "10 to 1 compression" or a "10 times compression" or it
can be stated as "compressing the image to 1/10 its original size".

Bit Per Pixel

Another way to state the compression of an image is to use the
terminology of bit per pixel. For an N×N image.

Bit per pixel = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐵𝑖𝑡𝑠 (𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑓𝑖𝑙𝑒)
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑖𝑥𝑒𝑙𝑠 (𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑓𝑖𝑙𝑒)

 = (8) (𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐵𝑦𝑡𝑒𝑠)
𝑁×𝑁

8

Data Compression Introduction

Example 2

Using the preceding example, with a compression factor of 65,536/6,554
bytes, we want to express this as bits per pixel. This is done by first finding
the number of pixels in the image = 256×256=65,536 pixels. We then find
the number of bits in the compressed image file = (6,554 bytes) (8
bits/bytes) = 52,432 bits. Now we can find the bits per pixel by taking the
ratio:

Bit per pixel = 52,532
65,536

 = 0.8 bits/pixel.

The reduction in the file size is necessary to meet the bandwidth
requirement for many transmission systems, as well as the storage
requirement in computer data bases. The amount of data required for digital
images is enormous. For example, a single 512 × 512, 8-bit image required
2,097,152 bits for storage. If we wanted to transmit this image over the
World Wide Web, it would probably take minutes for transmission- too long
for most people to wait.

Example 3

To transmit an RGB (true color) 512 × 512, 24-bit (8 bit / color)
image via modem at 28.8 kbaud (kilobits/second), it would take about :

 (512 × 512 pixels) (24 bit/pixels)
(28.8 ×1024 𝑏𝑖𝑡𝑠/𝑠𝑒𝑐𝑜𝑛𝑑)

 = 213 seconds = 3.6 minutes

Example 4

A colored video clip of 4 second duration with a frame size of 160×120
pixels and a frame rate of 30 frames per second, is to be transmitted via
modem at 28.8 kbaud (kilobits/second), it would take about

(160 × 120 pixels) � 24 bit
pixels� (4 secons)(30 frame /second)

(28.8 ×1024 𝑏𝑖𝑡𝑠/𝑠𝑒𝑐𝑜𝑛𝑑)
 = 1875 seconds

 = 31.25 minutes

The above results show the necessity of data compression especially in
images and movies transmission.

9

Data Compression Statistical Methods

Self Information (ideally length of the code)
In Information theory , the function I of the probability Pi (I = -log2 Pi bit)

measures the amount of uncertainty, surprise, or information that the event
contains.

If an event of low probability occurs, it causes greater surprise, and hence
conveys more information than the occurrence of an event of High probability.
Thus the information is connected with the element of surprise, which is a result
of uncertainty. The more unexpected the event, the greater the surprise, and
hence more information. Thus the probability of occurrence is related to the
information content. If P is the probability of occurrence of a message and I is
the information gained from the message, it is evident that when P→1 then I→0,
on the other hand when P→0 then I→∞, and in general a smaller P gives larger I.

While in data compression the function (I = -log2 Pi) measure the ideally
length of the code, hence, whenever the symbol has a high probability (i.e.
frequently occur) it will be assigned a shorter code.

 Probability self information Probability Code length

 Average Information -Entropy (ideally average length of the code)

In practice we are interested in the average information conveyed H (entropy),
than in the specific information of each symbol where:

H = -∑ 𝑃𝑖 𝑙𝑜𝑔 𝑃𝑖 𝑛
𝑖=1 bits \ symbol

 The function H of the probability distribution Pi measures the amount of
randomness (in other words information) the distribution contains. the more
randomness that exist in the data the more information that data contains.

 randomness Amount of information

Data Compression Statistical Methods

While in data compression the function (H) measure the ideally average
length of the code, hence, whenever the source symbols have a high entropy
those symbols will be assigned a longer code. Hence, the more randomness that
exist in the data , the more bits per pixel are required to represent the data and that
leads to less compression.

randomness average length of the code randomness compression

It is obvious that information theory is the base theory that data compression
based on.

Entropy ھو مقیاس لتشتت المعلومات.

 .عالیة Informationوتكون) عشوائیة عالیة (عالیة Hكلما تكون Symbolsكلما یزداد عدد ال

 . أقل Compressionیكون ال) عشوائیة عالیة (عالیة Hكلما تكون

entropy عاليRandomness عاليInformation عالیة Compression قلیل

 Hmax(xi) = log2 M and this happen only when Pi = 1
𝑀

 for all values of i

Ex

entropy للشخص الذي یعرف كلمتینno وyes)ھو) وباحتمالات متساویة

2
1log

2
1

2
1log

2
1)

2
1log

2
1

2
1log

2
1(−−=+−=H

 = 12log
2
12log

2
1

=+

entropy للشخص الذي یعرف ثلاث كلمات وباحتمالات متساویة ھو

H = -(
3
1log

3
1

3
1log

3
1

3
1log

3
1

++) = 1.58

entropy للشخص الذي یعرف اربع كلمات وباحتمالات متساویة ھو

H = -(+++
4
1log

4
1

4
1log

4
1

4
1log

4
1

4
1log

4
1) = 2

Data Compression Statistical Methods

 " yes" للشخص الذي یعرف كالمة واحدة فقط مثل كلمة entropyبینما

H = - 1 log 1 = 0

When calculating the ideally length of the code for the above example , we

can see that the length of the code in case of 2 words is equal to -
2
1log = 1 bits ,

also the length of the code in the in case of 4 words is equal to -
4
1log = 2 bits,

while its equal to – log 1
8
 = 3 bits in the case of 8 words. Hence, the more the

entropy of the data , the more bits per pixel are required to represent the symbols
of that data.

Source Coding

The problem of representing the source alphabet symbols Si in term of another
system of symbols (usually the binary system consisting of the two symbols 0 and
1) is the main topic of coding.

The two main problems of coding methods are the following:

1. Assigning codes that can be decoded unambiguously (i.e. the coder must
provide a one-to-one mapping).

2. Assign codes with the minimum average size..

For the purposes of efficiency. The average code length

𝐿 = �𝑃𝑖𝑙𝑖

n

i=1

is minimized, where 𝑙𝑖 is the length of the representation of the ith symbol Si.

the entropy function provides a lower bound on L (L ≥ H(x)).

Source Code Efficiency

 L = average length of the code

L = ∑ 𝑃𝑖 𝑙𝑖 n
i=1 bits/symbol.

 ξ𝑐𝑜𝑑𝑒 =
𝐻(𝑥)
𝐿 ∗ 100% 𝑤ℎ𝑒𝑟𝑒 ξ𝑐𝑜𝑑𝑒 = code Ef�iciency

Data Compression Statistical Methods

 H لان ن الحالة المثالیةماي ((H(x)ن ال م Lأقتراب بمقدار ξ تقاس كفائتھ sourceاي ان كل
 .))للرمز Ideally Lengthھو ال I وان I ھو معدل

 . L ≤ H(x)ولكن عملیا Hتقترب من Lان غایتنا ھي

Redundancy of the Code

Consider the four symbols a1, a2, a3, and a4. If they appear in our data strings
with equal probabilities (= 0.25), then the entropy of the data is :

H = -4 (0.25Iog2 0.25) = 2 bit/symbol.
Or directly , from the theorem :

H = log2 M = log2 4 = 2 bits/symbol , because H reach it's maximum value
when the symbols have equal probabilities.

Two is the smallest number of bits needed on the average to represent each
symbol in this case. We can simply assign our symbols the four 2-bit codes 00, 01,
10, and 11. Since the probabilities are equal, The average length of the code is:
 L = ⌈log2 M⌉ = ⌈log2 4⌉ = 2 .
the redundancy is :
 R = L – H = 2 – 2 = 0.
Hence, the data cannot be compressed below 2 bits/symbol.

Next, consider the case where the four symbols occur with different
probabilities as shown in Table 1 , where a1 appears in the data (on average) about
half the time, a2 and a3 have equal probabilities, and a4 is rare.

 Symbol Prob. Code1
 a1 0.49 1
 a2 0.25 01
 a3 0.25 001
 a4 0.01 000

 Table 1 : Variable-Size Codes.

In this case, the data has entropy :
 H = - (0.49 log2 0.49 + 0.25 log2 0.25 + 0.25 log2 0.25 + 0.01 log2 0.01)

= - (- 0.05 - 0.5 - 0.5 - 0.066) = 1.57 bits/symbol.
The smallest number of bits needed, on average, to represent each symbol has
dropped to 1.57 (i.e. the ideally length of the code is H = 1.57).

If we again assign our symbols the four 2-bit codes 00, 01, 10, and 11, the
redundancy would be :
 R = L – H
 = ⌈log2 4 ⌉ - 1.57 = 2 – 1.57 = 0.43 bits / symbol.
That means , the data can be compressed below 2 bits/symbol.

Data Compression Statistical Methods

 This suggests assigning variable size codes to the symbols. Code1 of Table 1

is designed such that the most common symbol, a1, is assigned the shortest code.
When long data strings are transmitted using Code1, the average size of the code
(the number of bits per symbol) is :

L = ∑ Pi li n
i=1

 = 1 × 0.49 + 2 × 0.25 + 3 × 0.25 + 3 × 0.01 = 1. 77 bits/symbol.
Which is very close to the minimum. The redundancy in this case is
 R = L - H = 1.77 - 1.57 = 0.2 bits per symbol.

Source Coding Techniques

Variable length code

یخصص لھ symbolsحیث ان كل رمز symbolsذه التقنیة تعنى بوجود الاحتمالیة للرموز ھ
code مختلف في الطول عن باقي الsymbols وذلك اعتمادا على أحتمالیة ذلك الsymbols حیث ان

لاحتمالیة ذا ا symbol ذا طول قلیل وبالعكس فان ال codeذا الاحتمالیة العالیة یعطي symbolsال
 . ذا طول كبیر codeیعطي القلیلة

𝐿 = �𝑃𝑖𝑙𝑖 (𝑏𝑖𝑡/𝑠𝑦𝑚𝑏𝑜𝑙)
𝑀

𝑖=1

 However, variable length code bring with them a fundamental problem, at the
receiving end, how do you recognize each symbol of the code? In, for example, a
binary system how do you recognize the end of one code word and the beginning
of the next ?

If the probabilities of the frequencies of occurrence of the individual symbols
are sufficiently different , then variable length encoding can be significantly more
efficient than fixed –length encoding

Pi ↑ li ↓

المخصص لذلك ال codeیجب ان یقل طول ال textفي ال symbolاي كلما تزید عدد مرات تكرار ال
symbol والعكس صحیح

عندما تكون fixed length codeمن بكثیر افضل variable length codeیكون ال ملاحظة
 .مختلفة بصورة كبیرة symbolاحتمالیات تكرار الرموز

Data Compression Statistical Methods

Shannon – Fano method

 To encode a message using Shannon-Fano method, you can follow the below
steps :

1. Sort the symbols in descending order according to their probabilities.
2. Divide the list of symbols into two parts : upper and lower, so that the

summation of the probabilities of the upper part is equal as possible to the
summation of the lower part symbols.

3. Assign "0" code to each of the upper part symbols, and "1" code to each of
the lower part symbols.

4. Divide each of the upper and lower part into upper and lower subdivision as
in step (2) above, and assign the code "0" and "1" as in step (3) above.

5. Continue in step(4) until each subdivision contains only one symbols.

Note

The Shannon-fano method is easy to implement, but the code is produces is
generally not good as that produced by the Huffman method, described in the next
section.

Ex1
 A source produce 5 independent symbols (x1, x2, x3, x4, x5) with its

corresponding probabilities 0.1, 0.3, 0.15, 0.25, 0.2 . design a binary code for the
above source symbol using Shannon – fanon method .

Sol

symbols Pi code li
 x 2 0.3 0 0 2
 x4 0.25 0 1 2
 x5 0.2 1 0 2
 x3 0.15 1 1 0 3
 x1 0.1 1 1 1 3

L = ∑ Pi li = 2*0.3 + 2*0.25 + 2* 0.2 + 3* 0.15 + 3* 0.1
 = 2.25 Bits\symbol

The entropy (the smallest number of bits needed, on average, to represent each
symbol) is

Data Compression Statistical Methods

H = - ∑ Pi log Pi
 = - (0.3 log 0.3 + 0.25 log 0.25 +0.2 log 0.2 + 0.15 log 0.15 + 0.1 log

0.1)
 = 2.228 Bits/symbol
R = L – H = 2.25 - 2.228 = 0.022

ξ code = H(x)
L

 * 100 % = 2.228
2.25

 * 100 % = 99 %

Note
If we use fixed length coding

 L = ⌈ log 2 5⌉ = ⌈ 2.3219⌉ = 3
 R = L – H = 3 - 2.228 = 0.772

ξ code = H(x)
L

 * 100 % = 2.228
3

 * 100 % = 74 %

.: coding in Shannon –fanon is more efficient than coding in fixed length
coding .

Ex2 :
A source produce 5 independent symbols (x1, x2, x3, x4, x5) with its

corresponding probabilities 0.1, 0.05, 0.25, 0.5, 0.1. design a binary code for the
above source symbol using Shannon – fanon method .

Sol
symbols Pi code li
 x4 0.5 0 1
 x3 0.25 1 0 2
 x1 0.1 1 1 0 3
 x5 0.1 1 1 1 0 4
 x2 0.05 1 1 1 1 4

L = ∑ Pi li = 1*0.5 + 2*0.25 + 3* 0.1 + 4* 0.1 + 4* 0.05
 = 1.9 Bits / symbol

The entropy (the smallest number of bits needed, on average, to represent each
symbol) is

H = - ∑ Pi log Pi
 = - (0.5 log 0.5 + 0.25 log 0.25 +0.1 log 0.1 + 0.1 log 0.1 + 0.05 log

0.05)

Data Compression Statistical Methods

 = 1.88 Bits /symbol

R = L – H = 1.9 – 1.88 = 0.02

ξ code = H(x)
L

 * 100 % .

 = 1.88
1.9

 * 100 % = 99 %

Ex3 :

A source produce 5 independent symbols (x1, x2, x3, x4, x5) with its
corresponding probabilities 0.1, 0.35, 0.3, 0.05, 0.2. design a binary code for the
above source symbol using Shannon – fanon method .

Sol

symbols Pi code li
 x2 0.35 0 1
 x3 0.3 1 0 2
 x5 0.2 1 1 0 3
 x1 0.1 1 1 1 0 4
 x4 0.05 1 1 1 1 4

L = ∑ Pi li = 1*0.35 + 2*0.3 + 3* 0.2 + 4* 0.1 + 4* 0.05
 = 2.15 Bit / symbol

The entropy (the smallest number of bits needed, on average, to represent each
symbol) is

H = - ∑ Pi log Pi
 = - (0.35 log 0.35 +0.3 log 0.3 +0.2 log 0.2 +0.1 log 0.1 + 0.05 log 0.05)

 = 2.062 Bit/symbol

R = L – H = 2.15 - 2.062 = 0.088

ξ code = H(x)
L

 * 100 % .

= 2.062
2.15

 * 100 % = 96 %
Sol 2

symbols Pi code li
 x2 0.35 0 0 2

Data Compression Statistical Methods

 x3 0.3 0 1 2
 x5 0.2 1 0 2
 x1 0.1 1 1 0 3
 x4 0.05 1 1 1 3

L = ∑ Pi li = 1*0.35 + 2*0.3 + 2* 0.2 + 3* 0.1 + 3* 0.05
 = 2.15 Bit / symbol

Ex4 :

A source produce 7 independent symbols (x1, x2, …. , x7) with its
corresponding probabilities 0.10, 0.15, 0.10, 0.05, 0.25, 0.20, 015. design a binary
code for the above source symbol using Shannon – fanon method .

Sol

Symbols Prob. Code li
 X5 0.25 00 2
 X6 0.20 01 2
 X2 0.15 100 3
 X7 0.15 101 3
 X1 0.10 110 3
 X3 0.10 1110 4
 X4 0.05 1111 4

The average size of this code is
 L = 0.25 × 2 + 0.20 × 2 + 0.15 × 3 + 0.15 × 3 + 0.10 ×3+ 0.10 × 4+0.05 × 4
 = 2.7 bits/symbol.

The entropy (the smallest number of bits needed, on average, to represent each
symbol) is
 H = -(0.2510g2 0.25 + 0.2010g2 0.20 + 0.1510g2 0.15 + 0.151og2 0.15

+ 0.10 log2 0.10 + 0.10 log2 0.10 + 0.0510g2 0.05)
= 2.67 bits/ symbols.

R = L – H = 2.7 - 2.67 = 0.03

ξ code = H(x)
L

 * 100 % .

= 2.67
2.7

 * 100 % = 99 %

Data Compression Statistical Methods

Huffman Coding method

Huffman makes the average number of binary digits per message nearly equal
the Entropy (average bits of information per message). To encode a message
using Huffman method, a tree must has to be constructed , with symbol at every
leaf, from bottom to up. This is done by following the below steps:

1) Sort the symbols in descending order according to their probabilities .
2) Assign "0" and "1" code for the two symbols with the smallest

probabilities .
3) Combine those two symbols in step (2) to construct a new symbol with

probability equal to the summation of the two probabilities , then enter the
new symbol in the list at a new position appropriate to its new probability .

4) Repeat step (2 and 3) until the list has only one symbol.
5) The code word of any symbol may be obtained by following the series of

binary codes (0s, 1s) which has been assigned to that symbol.

Note

It can be shown that the size of the Huffman code of a symbol ai with
probability Pi is always less than or equal to ⌈ -log Pi ⌉ (the ideally length of the
code) .

Ex1

Design a binary code for the below source symbol using Huffman method.

Xi Pi code li
x 1 0.3 0 0.55 0 00 2

 x2 0.25 1 0.45 1 01 2
x3 0.2 11 2
x4 0.15 0 0.25 0 100 3
x5 0.1 1 0.2 1 101 3

L=∑ li pi = 2.25 bits\symbol

 Shannon –fanoبطریقة ال codeما عملنا ذاھنا ھي نفس الكفاءه ا sourceكفائة ال

Ex2
Design a binary code for the below source using Huffman method .

Data Compression Statistical Methods

Xi Pi code
x 1 0.5 0.5 0

 0

 x2 0.25 0.25 0 0.5 1 10
x3 0.1 0.25 1 111
x4 0.1 0 0.15 0 1100
x5 0.05 1 0.1 1 1101

L=∑ li pi= 2.25

=1.9 bits\symbol
 دائما یكون ملاحظة

Lhuff ≤ Lshann
 ھي Lوان ھناك حدود لل

H(x)≤ L ≤ H(x)+1

حیث قد یكون fixed lengthولاتنطبق على variable lengthھذه الحدود تنطبق على ال
 بكثیر ۱اكبر من fixed lengthالفرق في ال

Ex3

Design a binary code for the below source symbol using Huffman method

Code xi p(xi)

1 x1 0.4 0.6 0

000 x2 0.2 0.24 0.36 0 0.4 1

010 x3 0.12 0.16 0.2 0 0.24 1

0010 x4 0.08 0.12 0.12 0 0.16 1

0011 x5 0.08 0.08
0 0.12 1

0110 x6 0.08 0 0.08 1

0111 x7 0.04 1

L=∑ Pi li = 2.48 bits/symbol

Data Compression Statistical Methods

H(x)=2.419 bits/symbol

ƺcode =2.419
2.45

 * 100 % = 97.54 %

For Shannon –fanon

L= 2.52 bit/symbol

ƺcode =2.419
2.52

 * 100 % = 95.99 %

Ex4

A source produce 7 independent symbols (x1, x2, x3, x4, x5, x6, x7) with its
corresponding probabilities 0.23, 0.17, 0.20 , 0.15, 0.08, 0.05, 0.12 design a
binary code for the above source symbol using Huffman method.

Sol

Symbols prob. Code

 X1 0.23 10
 X3 0.20 11
 X2 0.17 000
 X4 0.15 001
 X6 0.12 011
 X5 0.08 0100
 X4 0.05 0101

Extension of code

when we extend a source with order of n , we have the following equation for L
and H

L=
Ln
n

H(x) =
Hn(x)
n

 where n is the order of extension

Data Compression Statistical Methods

We also have the important relation for coding a source ,

H(x)≤ L ≤ H(x)+1

Now , if we take the nth extension of the code the above relation is also applied , so

Hn(x) ≤ Ln ≤ Hn(x)+1

Where Ln is the average code length ,for the extended source

Since Ln = n L

And Hn(x) = nH(x)

Then

nH(x) ≤ nL ≤ n H(x) + 1

 نحصل على القانون العام nبالقسم على

 H(x)≤ L ≤ H(x) + 1
𝑛

یكون) اكبر orderب extensionاي كلما عملنا (source outputعادلة اعلاه تبین انھ كلما وسعنا ال لما
 وھذه یؤدي الى Hستقترب من Lافضل لانة

 ξ code 100%

Ex

A binary source produce two symbols x1 ,x2 with probabilities p(x1) = 0.8 , p(x2)
=0.2 . find ξ for the 1st , 2nd , 3rd extension of binary code for the above source .

Sol

(1) n=1 , coding with extension

Xi Pi code li
x 1 0.8 0 1
x2 0.2 1 1

L=1 Bits /symbol
H(x) = - ∑ Pi log Pi
 = -(0.8 log 0.8 + 0.2 log 0.2)
 =0.72 Bits/symbol

Data Compression Statistical Methods

ξ code =
H(x)
𝐿

 * 100% =0.72
1

 * 100% = 72 %

(2) n=2 , coding with extension of order 2

Symbol Pi_ code li
x1x1 0.64 0.64 0 0 1
x1x2 0.16 0.2 0 0.36 1 11 2
x2x1 0.16 0 0.16 1 100 3
x2x2 0.04 1 101 3

L2= ∑ li Pi
 = 1*0.64 + 2*0.16 + 3* 0.16 + 3* 0.04 = 1.56 bits\symbol
L = L2

2
 = 1.56

2
 = 0.78 bits / symbol

H2 (x) = -(0.64 log 0.64 + 2*0.16 log 0.16 + 0.04 log 0.04)
 = 1.44
H(x) = H2(x)

2
 = 1.44

2
 = 0.72 bits/symbol

ξ code = H(x)
L

 * 100% = 0.72
0.78

 * 100 % = 94 %

 1واحد ھو bitیرمزان ب x1x1 ھو انھ اصبح لدینا رمزان ھما Lلاحظ ان سبب نقصان ملاحظة
 0.64 وان احتمالیة ورودھا كبیرة وھي

(3) n= 3 ,coding with extension of order 3

Symbol Prob. code li

x1x1x1 0.512 0 1
x1x1x2 0.128 1 0 0 3
x1x2x1 0.128 1 0 1 3
x2x1x1 0.128 1 1 0 3
x1x2x2 0.032 1 1 1 0 0 5
x2x1x2 0.032 1 1 1 0 1 5
x2x2x1 0.032 1 1 1 1 0 5

Data Compression Statistical Methods

x2x2x2 0.008 1 1 1 1 1 5

ولكن تم استخدام Huffmanبأستخدام طریقة codingمن الأكفاء اجراء عملیة ال : ملاحظة
 .للسھولة Shannon – fanoطریقة

L3= ∑ Pi li =2.184
L = L3

3
 = 2.184

3
 = 0.728 bits / symbol

H3 (x) = -∑ Pi log Pi = 2.16
H(x) = H3(x)

3
 = 2.16

3
 = 0.72 bits/symbol

ξ code = H(x)
L

 * 100% = 0.72
0.728

 * 100 % = 98.9 %

وزادت الى ۲بمقدار extensionعندما عملنا % ۹٤الى % ۷۲لاحظ ان الكفاءة زادت من

 .۳بمقدار extensionعندما عملنا % ۹۸٫۹

Data Compression Prefix Code

Prefix Code
prefix property: This property requires that once a certain bit pattern has been

assigned as the code of a symbol, no other codes should start with that pattern (the
pattern cannot be the prefix of any other code).

Hence, a prefix code is a variable-size code that satisfies the prefix property.

 As we Know earlier, designing variable-size codes is done by following two

principles:
(1) Assign short codes to the more frequent symbols and ,
(2) obey the prefix property.

Following these principles produces short, unambiguous codes, but not necessarily
the best (i.e. shortest) ones.

Binary Representation of the Integers

The binary representation of the integers has two main disadvantages :
1. does not satisfy the prefix property.
2. In this representation the size n of the set of integers has to be known in

advance, since it determines the code size, which is 1 + ⌊ log2 n ⌋.

For example the size of the code of the integer is
Code size (3) = 1 + ⌊ log2 3 ⌋ = 1 + ⌊ 1.585 ⌋ = 1+1 = 2
Code size (5) = 1 + ⌊ log2 5 ⌋ = 1 + ⌊ 2.322 ⌋ = 1+2 = 3
Code size (8) = 1 + ⌊ log2 8 ⌋ = 1 + ⌊ 3 ⌋ = 1+3 = 4
Code size (19) = 1 + ⌊ log2 19 ⌋ = 1 + ⌊ 4.24⌋ = 1+4 = 5 its code is 10011
Code size (37) = 1 + ⌊ log2 37 ⌋ = 1 + ⌊ 5.2⌋ = 1+5 = 6 its code is 100101

Integer binary Code
 representation length
 0 0 1
 1 1 1
 2 10 2
 3 11 2
 4 100 3
 5 101 3
 6 110 3
 7 111 3
 8 1000 4
 9 1001 4

Table (1) : The Binary Representation of the Integers

2

Data Compression Prefix Code

Note : the ambiguity will happen between 1 and all the other numbers (except
0).

Ex:
Encoding this string 5,3,1,6 with the codes of table 1 yields :

101111110
Logically specking, the decoder does not know the size n of the set of integers

(which has to be known in advance e.g. ASCII code) , hence The decoder does
not know whether to decode the string as 1|0|1|1|1|1|1|1|0 , which is
1,0,1,1,1,1,1,1,0 ; or as 10|11|11|11|0 , which is 2,3,3,3,0 ; or as 101|111|110 ,
which is.. 5,7,6 and so on. Code of table 1 is thus ambiguous.The decoder has to
follow a constructed Binary tree).

In some applications, a prefix code is required to code a set of integers whose

size is not known in advance. Several such codes, most of which are presented
later.

The Unary Code

The unary code of the nonnegative integer n is defined as n - 1 ones followed
by a single 0 (Table 2). The length of the unary code for the integer n is thus n bits.

Integer unary Code Code
 length
 1 0 1
 2 10 2
 3 110 3
 4 1110 4
 5 11110 5
 6 111110 6
 7 1111110 7
 8 11111110 8
 9 111111110 9

Table (2) : The Unary Code

Ex:
Assume that a number of integers are encoded into 1101111110010 using

the unary code, decode this codeword.
Sol

 The decoder starts at the root, reads the first bit "1", since this bit is not "0",
the decoder precede foreword, the second bit "1" , also the decoder precede
foreword, since the third bit is "0" ,it make the decode stop, and emits the integer

3

Data Compression Prefix Code

"3" which is the number of bits it has been read. It again returns to the root, reads
the first bit "1", and so on until it read a bit "0", and emits the integer "7" which is
the number of bits it has been read. It again returns to the root, reads the first bit
"0", which force the decoder to stop and emit the integer "1", which is the number
of bits it has been read. It again returns to the root, reads "1" , moves foreword ,
read "0" which force the decoder to stop and emit the integer "2", which is the
number of integer it has been read.

Note

Its obvious that the unary code produces, unambiguous codes, but it's not
necessarily the best ones (i.e. very long code).

Other Prefix Codes

Four more prefix codes are described in this section. We use B(n) to denote the
binary representation of integer n. Thus |B(n)| is the length, in bits, of this
representation. We also use B'(n) to denote B(n) without its most significant bit
(which is always 1).

Code C1 is made of two parts. To code the positive integer n we first generate
the unary code of |B(n)| (the size of the binary representation of n), then append
B'(n) to it. An example is n = 16 = 100002. The size of B(16) is 5, so we start with
the unary code 11110 and append B'(16) = 0000. The complete code is thus
11110|0000. Another example is n = 5 = 1012 , The size of B(5) is 3, so we start
with the unary code 110 and append B'(5) = 01 the complete code is 110|01.the
length of C1(n) is 2 ⌊log2 n ⌋ + 1 bits.

Code C2 is a rearrangement of C1 where each of the 1 + ⌊log2 n ⌋ bits of the
first part (the unary code) of C1 is followed by one of the bits of the second part.
Thus code C2 (16) = 101010100 and C2 (5) = 10110.

Code C3 starts with |B(n)| coded in C2 , followed by B'(n). Thus 16 is coded as
C2 (5) = 10110 followed by B'(16) = 0000. The complete C3 (16) code is thus
10110|0000

Code C4 consists of several parts. We start with B(n). To the left of this we
write the binary representation of |B(n)| - 1 (the length of n, minus 1). This
continues recursively, until a 2-bit length number is written. A zero is then
added to the right of the entire number, to make it decodable. To encode 16, we
start with 10000, add | B(16) | -1 = 4 = 1002 to the left, then | B(4) | - 1 = 2 = 102 to
the left of that and finally, a zero on the right. The result is 10|100|10000|0. To
encode 5, we start with 101, add |B(5)| - 1 = 2 = 102 to the left, and a zero on the
right. The result is 10|101|0.

4

Data Compression Prefix Code

Generating the Four prefix codes can be summarized in the below steps :
B(n) : is the binary representation of integer n.
B'(n) : denote B(n) without its most significant bit (which is always 1).
|B(n)| : is the length, in bits, of B(n).

1. C1(n) = U(|B(n)|) | B'(n).
2. C2(n) = rearrangement (alternative representation) of C1.
3. C3(n) = C2(|B(n)|) | B'(n).
4. C4(n) = [|B(n)| - 1] | B(n) | 0. Where [] denote the Binary representation.

Ex1:
Find the four other prefix codes for n = 13.
B(13) : 1101.
B'(13) : 101.
|B(13)| : 4.

1. C1(n) = U(|B(n)|) | B'(n).
 C1(13) = U (4) | B'(13).
 = 1110|101.

2. C2(13) = 1110110.

3. C3(n) = C2(|B(n)|) | B'(n).

 C3(13) = C2(4) | B'(13).

 B(4) : 100.
 B'(4) : 00.
 |B(4)| : 3.

C1(4) = U(3) | B'(4).
 = 110| 00.
C2(4) = 10100.

 C3(13) = 10100|101.

4. C4(n) = [|B(n)| - 1] | B(n) | 0.
 C4(13) = [|B(13)| - 1] | B(13) | 0.
 = [4 - 1] | 1101 | 0.
 = 11|1101|0.

 Step 4 is continues recursively, until a 2-bit length number is written.

5

Data Compression Prefix Code

Ex2:
Find the four other prefix codes for n = 9.
B(9) : 1001.
B'(9) : 001.
|B(9)| : 4.

1. C1(n) = U(|B(n)|) | B'(n).
 C1(9) = U (4) | B'(9).
 = 1110|001.

2. C2(9) = 1010110.

3. C3(n) = C2(|B(n)|) | B'(n).

 C3(9) = C2(4) | B'(9).

 C2(4) = 10100. From Ex1.

 C3(9) = 10100|001.

4. C4(n) = [|B(n)| - 1] | B(n) | 0.
 C4(9) = [|B(9)| - 1] | B(9) | 0.
 = [4 - 1] | 1001 | 0.
 = 11|1001|0.

General Prefix Code

More prefix codes for the positive integers, appropriate for special
applications, may be designed by the following general approach. Select positive
integers Vi and combine them in a list V (which may be finite or infinite according
to needs).

V = [V1 V2 V3… 2i-1Vk]
The code of the positive integer n is prepared in the three following steps:
1. Find k such that

 � 𝑉𝑖 < 𝑛 ≤ ∑ 𝑉𝑖 𝑘

𝑖=1 𝑘−1
𝑖=1

2. Compute the difference

 𝑑 = n − ∑ 𝑉𝑖 − 1𝑘−1

𝑖=1
.
dmax can be written in ⌈ log2 Vk ⌉ bits. Hence, The number d is encoded, using

the standard binary code, with ⌈ log2 Vk ⌉ number of bits.

6

Data Compression Prefix Code

3. Encode n in two parts. Start with k encoded in some prefix code (here we

use unary code for simplicity) , and concatenate the binary code of d.
 Code = U(k)|dB

Ex1
Encode the integer n = 10 , using the general prefix code.

The infinite sequence V = [1 2 4 8 ...].

 10
1. The integer n = 10 satisfies
 � 𝑉𝑖 < 10 ≤ ∑ 𝑉𝑖 4

𝑖=1 3
𝑖=1 = 7 < 10 ≤ 15.

 Hence, k = 4.

2. 𝑑 = 10 − ∑ 𝑉𝑖 − 13
𝑖=1 = 10 − 7 − 1 = 2 .

3. k = 4 encoded in unary (unary code is 1110), and d must be written in
⌈ log2Vk ⌉ = ⌈ log2 8 ⌉ = 3 bits.

 The general code of 10 is :

Code = U(k)|dB
 = U(4)|2B 2 must be represent in 3 bits.

 = 1110|010

Ex2

Encode the integer n = 19 , using the general prefix code.

The infinite sequence V = [1 2 4 8 16 ...].
 19
1. The integer n = 19 satisfies

 � 𝑉𝑖 < 19 ≤ ∑ 𝑉𝑖 5
𝑖=1 4

𝑖=1 = 15 < 19 ≤ 31.

 Hence, k = 5.

2. 𝑑 = 19 − ∑ 𝑉𝑖 − 14
𝑖=1 = 19 − 15 − 1 = 3 .

3. k = 5 encoded in unary (unary code is 11110), and d must be written in
⌈ log2Vk ⌉ = ⌈ log2 16 ⌉ = 4 bits.

 The general code of 19 is :

Code = U(k)|dB

7

Data Compression Prefix Code

 = U(5)|3B 3 must be represented in 4 bits
 = 11110|0011

 The Golomb Code
The Golomb code for nonnegative integers n , can be an effective Huffman code.
The code depends on the choice of a parameter b. The first step is to compute the
two quantities :
 q=⌊ 𝑛−1

𝑏
 ⌋ , r = n - qb-1,

(where the notation ⌊ x ⌋ implies truncation of x).
The Golomb code is constructed of two parts; the first is the value of q + 1,

coded in unary, followed by r represented in binary depending on the selected
base.

 Golomb (n) = U (q + 1) | r

Choosing b = 3, e.g., produces three possible remainders, 0, 1, and 2. They are
coded 0, 10, and 11, respectively. Choosing b = 5 produces the five remainders 0
through 4, which are coded 00, 01, 100, 101, and 110. Table 2 shows (r) code of
the Golomb code for b = 3 and b = 5.

 r 0 1 2 3 4
b = 3 0 10 11
b = 5 00 01 100 101 110

Table 2 : r code in Golomb Codes for b = 3 and b = 5.

Ex1

Encode the integer n = 8 , using the Golomb code choosing b = 3.

q=⌊ 𝑛−1
𝑏

 ⌋

q=⌊ 8−1
3

 ⌋ =⌊ 7
3
 ⌋ = 2

r = n - qb-1,
 = 8 – 2 * 3 – 1 = 1

 Golomb (n) = U (q + 1) | r
 Golomb (8) = U (3) | 1 we obtain r from table 2
 = 110 | 10
Ex2

Encode the integer n = 7 , using the Golomb code choosing b = 5.

8

Data Compression Prefix Code

q=⌊ 𝑛−1

𝑏
 ⌋

q=⌊ 7−1
5

 ⌋ =⌊ 6
5
 ⌋ = 1

r = n - qb-1,
 = 7 – 5 * 1 – 1 = 1

 Golomb (n) = U (q + 1) | r
 Golomb (7) = U (2) | 1 we obtain r from table 2
 = 10 | 01

A Variant of Huffman coding

The Huffman method assumes that the frequencies of occurrence of all the
symbols of the alphabet are known to the compressor. In practice, the frequencies
are seldom, if ever, known in advance. One approach to this problem is for the
compressor to read the original data twice. The first time, it just calculates the
frequencies. The second time, it compresses the data. Between the two passes, the
compressor constructs the Huffman tree. Such a method is called semiadaptive and
is normally too slow to be practical. The method that is used in practice is called
adaptive (or dynamic) Huffman coding. This method is the basis of the UNIX
compact program.

This variant of the adaptive Huffman method is simpler but less efficient. The
idea is to calculate a set of n variable-size codes based on equal probabilities, to
assign those codes to the n symbols at random, and to change the assignments "on
the fly," as symbols are being read and compressed. The method is not efficient
since the codes are not based on the actual probabilities of the symbols in the
input stream. However, it is simpler to implement and also faster than the adaptive
method described above, because it has to swap rows in a table, rather than update
a tree, when updating the frequencies of the symbols.

The main data structure is an n × 3 table where the three columns store the
names of the n symbols, their frequencies of occurrence so far, and their codes.
The table is always kept sorted by the second column. When the frequency counts
in the second column change, rows are swapped, but only columns 1 and 2 are
moved.The codes in column 3 never change.

Figure 1 shows an example of four symbols and the behavior of the method
when the string "a2, a4, a4" is compressed.

Figure 1 a shows the initial state. After the first symbol a2 is read, its count is
incremented, and since it is now the largest count, rows 1 and 2 are swapped
(Figure 1 b). After the second symbol a4 is read, its count is incremented and rows
2 and 4 are swapped (Figure 1c). Finally, after reading the last symbol a4,its count
is the largest, so rows 1 and 2 are swapped (Figure 1d).

9

Data Compression Prefix Code

Name Count Code Name Count Code Name Count Code Name Count Code
 a1 0 0
 a2 0 10
 a3 0 110
 a4 0 111

 a2 1 0
 a1 0 10
 a3 0 110
 a4 0 111

 a2 1 0
 a4 1 10
 a1 0 110
 a3 0 111

 a4 2 0
 a2 1 10
 a1 0 110
 a3 0 111

 (a) (b) (c) (d)
 Figure 1 : Four Steps in a Huffman Variant coding.

 Hence, the input string is a2a4a4 output is 0|10|0

Ex
Design a binary code for the source symbol shown in figure 2 using the

variant of Huffman method, assume that the input stream is a3a5a4a4a3a2a3.

Name Count Code Name Count Code Name Count Code Name Count Code
 a1 0 0
 a2 0 10
 a3 0 110
 a4 0 1110
 a5 0 1111

 a3 1 0
 a1 0 10
 a2 0 110
 a4 0 1110
 a5 0 1111

 a3 1 0
 a5 1 10
 a1 0 110
 a2 0 1110
 a4 0 1111

 a3 1 0
 a5 1 10
 a4 1 110
 a1 0 1110
a2 0 1111

 (a) (b) (c) (d)

Name Count Code Name Count Code Name Count Code Name Count Code
 a4 2 0
 a3 1 10
 a5 1 110
 a1 0 1110
 a2 0 1111

 a4 2 0
 a3 2 10
 a5 1 110
 a1 0 1110
 a2 0 1111

 a4 2 0
 a3 2 10
 a5 1 110
 a2 1 1110
 a1 0 1111

 a3 3 0
 a4 2 10
 a5 1 110
 a2 1 1110
a1 0 1111

 (e) (f) (g) (h)

 Figure 2 : eight Steps in a Huffman Variant coding.

input string is a3a5a4a4a3a2a3 0|10|110|0|10|1110|0

The only point that can cause a problem with this method is overflow of the

count fields. If such a field is k bits wide, its maximum value is 2k - 1, so it will
overflow when incremented for the 2k th time. This may happen if the size of the
input stream is not known in advance, which is very common. Fortunately, we do
not really need to know the counts, we just need them in sorted order, making it
easy to solve this problem.

10

Data Compression Prefix Code

One solution is to count the input symbols and, after 2k - 1 symbols are input
and compressed, to (integer) divide all the count fields by 2 (or shift them one
position to the right, if this is easier).

Another, similar, solution is to check each count field every time it is
incremented and, if it has reached its maximum value (if it consists of all ones),
to (integer) divide all the count fields by 2 as above. This approach requires fewer
divisions but more complex tests.

Whatever solution is adopted should be used by both the compressor and
decompressor.

MNP5

Microcom, Inc., a maker of modems, has developed a protocol (called MNP,
for Microcom Networking Protocol) for use in its modems. Among other things,
the MNP protocol specifies how to unpack bytes into individual bits before they
are sent by the modem. These methods (especially MNP5) have become very
popular and are currently used by most modern modems.

The MNP5 method is commonly used for data compression by modems.
MNP5 method is a two-stage process that starts with run-length encoding,
followed by adaptive frequency encoding.

First Stage : Run-length encoding , which has been described in RLE Text
Compression, and it has been solved in MNP5 in different manner. When three or
more identical consecutive bytes are found in the source stream, the compressor
emits three copies of the byte onto its output stream, followed by a repetition
count. When the decompressor reads three identical consecutive bytes, it knows
that the next byte is a repetition count (which may be zero, indicating just three
repetitions). A disadvantage of the method is that a run of three characters in the
input stream results in four characters written to the output stream (expansion).A
run of four characters results in no compression. Only runs longer than four
characters do actually get compressed. Another, slight, problem is that the
maximum count is artificially limited to 255.
Ex1

Use the first stage of MNP5 to compress the string
 aaabccccddeeeeef
Sol : aaa3bccc4ddeee5f
 Or aaa0bccc1ddeee2f
 Where 0 means 3 , 1 means 4 and 2 means 5 in order to maximize the limit

of the count by 3.

Calculating Compression Factor for MNP5 stage 1
As we state in RLE text compression that the compression factor (CF) is :

Compression Factor = N

N − M(L − 3)

11

Data Compression Prefix Code

For calculating the CF for MNP5, just substitute 4 for 3.
Ex2

Calculate the CF for MNP5 stage1 (Run Length encoding) in which
N = 1000, M = 50, L = 10.

For MNP5 the compression factor = N
N − M(L − 4)

CF = 1000/[1000 - 50(10 - 4)] = 1.428.

You can see that RLE text compression gives better result than RLE MNP5
compression because CF is 1.538 in RLE text compression while CF is 1.428 in
MNP5.

Ex3

 for the following message "ffcccccfaaaaaafbbbbbbbbbbbbbf" calculate the
CF for stage1 of MNP5 method.

 The compressed message will be ffccc5faaa6fbbb13f

 Or ffccc2faaa3fbbb10f in order to maximize the limit of the count by 3.

Note that the count 13 is encoded as ASCII code with only 1 byte length.

 M = 3

 L = 5+6+13
3

 = 8

compression factor = N
N – M(L− 4)

 = 29
29 – 3(8− 4)

CF = 29
20 – 3

 = 29
17

 = 1.7

Where 17 represent the uncompressed file length.

Second Stage : Adaptive Frequency Encoding , which operates on the bytes in
the partially compressed stream generated by the first stage. Stage 2 is similar to
the method of Variant of Huffman Code. It starts with a table of 256×2 entries,
where each entry corresponds to one of the 256 possible 8-bit bytes (ASCII) from
00000000 to 11111111. The first column, the frequency counts, is initialized to all
zeros. Column 2 is initialized to variable-size codes, called tokens, that vary from
a short "000|0" to a long "111|11111110". Column 2 with the tokens is shown in

12

Data Compression Prefix Code

Table 2 (which shows column 1 with frequencies of zero). Each token starts with
a 3-bit header, followed by some code bits.

The code bits (with three exceptions) are the two 1-bit codes 0 and 1, the four
2-bit codes 0 through 3, the eight 3-bit codes 0 through 7, the sixteen 4-bit codes,
the thirty-two 5-bit codes, the sixty-four 6-bit codes, and the one hundred and
twenty seven 7-bit codes. This provides for a total of 2 + 4 + 8 + 16 + 32 + 64 +
127 = 253 codes. The three exceptions are the first two codes "000|0" and "000|1",
and the last code, which is "111|11111110" instead of the expected "111|1111111".

When stage 2 starts, all 256 entries of column 1 are assigned frequency counts
of zero. When the next byte (e.g. B) is read from the input stream (actually, it is
read from the output of the first stage), the corresponding token is written to the
output stream, and the frequency of entry B is incremented by 1. Following this,
ASCII code may be swapped to ensure that table entries with large frequencies
always have the shortest tokens. Notice that only the ASCII code with its
corresponding frequency are swapped, not the token. Thus the first entry always
corresponds to token 000|0 and contains its frequency count. The ASCII code of
this entry , however, may change from the original "00000000" to another ASCII
code if other ASCII code achieve higher frequency counts.

 Byte Freq. Token
ASCII

Byte Freq. Token
ASCII

 Byte Freq. Token
ASCII

 0 0 000|0
 1 0 000|1
 2 0 001|0
 3 0 001|1
 4 0 010|00
 5 0 010|01
 6 0 010|10
 7 0 010|11
 8 0 011|000
 9 0 011|001
 10 0 011|010
 11 0 011|011
 12 0 011|100
 13 0 011|101
 14 0 011|110
 15 0 011|111

 16 0 100|0000
 17 0 100|0001
 18 0 100|0010
 19 0 100|0011
 20 0 100|0100
 21 0 100|0101
 22 0 100|1110
 23 0 100|1111
 24 0 100|1000
 25 0 100|1001
 26 0 100|1010
 27 0 100|1011
 28 0 100|1100
 29 0 100|1101
 30 0 100|1110
 31 0 100|1111

 32 0 101|00000
 33 0 101|00001
 34 0 101|00010
 :
 62 0 101|11110
 63 0 101|11110
 64 0 110|000000
 65 0 110|000001
 66 0 110|000010
 :
 250 0 111|1111010
 251 0 111|1111011
 252 0 111|1111100
 253 0 111|1111101
 254 0 111|1111110
 255 0 111|11111110

 Table 3. the MNP5 tokens

13

Data Compression Prefix Code

The frequency counts are stored in 8-bit fields. Each time a count is incremented,
the algorithm checks to see whether it has reached its maximum value. If yes, all
the counts are scaled down by (integer) dividing them by 2.

Another, subtle, point has to do with interaction between the two compression
stages. Recall that each repetition of three or more characters is replaced, in stage
1, by three repetitions, followed by a byte with the repetition count. When these
four bytes arrive at stage 2, they all replaced by tokens, but the fourth one does
not cause an increment to the frequency of that count.
Example: Suppose that the character with ASCII code 52 repeats six times. Stage
1 will generate the four bytes "52, 52, 52, 3," and stage 2 will replace each with a
token, will increment the entry for "52" (entry 53 in the table) by 3, but will not
increment the entry for "3" (which is entry 4 in the table). (The three tokens for
the three bytes of "52" may all be different, since tokens may be swapped after
each "52" is read and processed.)

The efficiency of MNP5 is a result of both stages. The efficiency of stage 1
depends heavily on the original data. Stage 2 also depends on the original data, but
to a smaller extent. Stage 2 tends to identify the most frequent characters in the
data and assign them the short codes. A look at Table 2 shows that 32 of the 256
characters have tokens that are 7 bits or fewer in length, thus resulting in
compression. The other 224 characters have tokens that are 8 bits or longer. When
one of these characters is replaced by a long token, the result is no compression, or
even expansion.

The efficiency of MNP5 thus depends on how many characters dominate the
original data. If all characters occur at the same frequency, expansion will result.
In the other extreme case, if only four characters appear in the data, each will be
assigned a 4-bit token, and the compression factor will be 2. Explain??

o Exercise: Assuming that all 256 characters appear in the original data with
the same probability (1/256 each), what will the expansion factor in stage 2 be?
Sol

Compression Factor = 𝑈𝑛𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑓𝑖𝑙𝑒 𝑠𝑖𝑧𝑒

𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑓𝑖𝑙𝑒 𝑠𝑖𝑧𝑒

CF = 256∗8

4∗4+4∗5+8∗6+16∗7+32∗8+64∗9+127∗10+1∗11
= 2048

16+20+48+112+256+576+1270+11

 =2048

2309
= 𝟎.𝟖𝟖𝟕 which mean expansion.

Updating the Table
The process of updating the table of MNP5 codes by swapping rows can be done in
two ways:

14

Data Compression Prefix Code

1. Sorting the entire table every time a frequency is incremented. This is simple in
concept but too slow in practice, because the table is 256 entries long.

2. Using pointers in the table, and swapping pointers such that items with large
frequencies will point to short codes.

15

Data Compression Dictionary method

Dictionary methods

Dictionary-based compression methods does not use a statistical

model, nor do they use variable-size code. Instead they select string of

symbols and encode each string as a token (index), using a dictionary. The

dictionary holds string of symbols and it may be static or dynamic (

adaptive). The former is permanent , some times allowing the additional

of string but not deletion, where as the later hold string previously found in

the input stream, allowing for addition and deletion of string as a new input

is being read.

Static dictionary

 The simplest example of a static dictionary is the dictionary of English

language used to compress English text. A word is read from the input

stream and the dictionary is searched. If a match is found, an index to the

dictionary is written into the output stream, otherwise, the uncompressed

word itself is written.

As a result, the output stream contains index and row words and we need

to distinguish between them, and to do that we must use an extra bit in

every item written. In practice, a 19-bit index is sufficient to specify an item

in a 219 = 524288 word dictionary. Thus when a match is found, we can

write 20-bit token consisting of a flag bit (perhaps is 0) followed by 19-bit

index. When no match is found, a flag of "1" is written, followed by the size

of the un match word, followed by the word itself.

2

Data Compression Dictionary method

Example

Assuming that the word "bet" is found in dictionary entry 1025, it is
encoded as 20-bit number 0|0000000010000000001.

 Assuming that the word "xet" is not found, it is encoded
1|0000011|01111000|01100101|01110100. This is a 4-byte number where
the 7-bit field 0000011 indicate that three more byte follow, while the
three other bytes represent the ASCII code for the small letters x , e , t
respectively.

Argument

3

Data Compression Dictionary method

Argument

Assuming that the size is written as a 7-bit number, and that an average
word size is five characters, an uncompressed word occupies, on average, 6
bytes (= 48 bits) in the output stream. Compressing 48 bits into 20 is
excellent, provided that it happens often enough. Thus, we have to answer
the question; How many matches are needed in order to have overall
compression? We denote the probability of a match (the case where the
word is found in the dictionary) by P. After reading and compressing N
words, the size of the output stream will be N[20P + 48(1 - P)] = N[48 -
28P] bits. The size of the input stream is (assuming five characters per
word) 40N bits. Compression is achieved when N[48 - 28P] < 40N, which
implies P > 0.29. We need a matching rate of 29% or better to achieve
compression.

Exercise: What compression factor do we get with P = 0.9?

As long as the input stream consist of English text, most words will be
found in the dictionary. Other type of data, however, may not found. A file
containing the source code of a computer program may contain words such
as Cout, XOR, Malloc that may be not found in the English dictionary. This
show that the static dictionary is not a good choice for a general-purpose
compressor.

Adaptive dictionary
In general adaptive-based method is preferable. Such a method can start

with an empty dictionary or with a small , default dictionary, add words to
it as they are found in the input stream, and delete old words, since a big
dictionary mean slow search. If a match is found, then a token (index)
will be written on the output stream, otherwise the uncompressed word
should be written and also added to the dictionary. The last step in each
iteration check to see whether an old word should be deleted from the
dictionary.

The advantages of the adaptive dictionary are :

1. It involves string search and match operation, rather than numerical
computations. many programmers prefer that.

2. Each of the encoder & decoder uses a different algorithm (this is an
asymmetric compression). in statistical compression methods, the

4

Data Compression Dictionary method

decoder is normally the exact opposite of the encoder (symmetric
compression).

LZ77 (Sliding Window)

The main idea of this method (Ziv 77) , is to use part of the previously
seen input stream as the dictionary. The encoder maintains a window to the
input stream and shifts the input in that window from right to left as strings
of symbols are being encoded. The method is thus based on a sliding
window. The window is divided into two parts. The part on the left is called
the search buffer. This is the current dictionary, and it always includes
symbols that have recently been input and encoded. The part on the right is
the look-ahead buffer, containing text yet to be encoded. In practical
implementations the search buffer is some thousands of bytes long, while
the look-ahead buffer is only tens of bytes long. The vertical bar between the
t and the e below represents the current dividing line between the two
buffers. We thus assume that the text "sir˽sid˽eastman˽easily˽t" has already
been compressed, while the text "eases˽sea˽sick˽seals" still needs to be
compressed.

 Search buffer look-ahead buffer

The encoder scans the search buffer backwards (from right to left)

looking for a match to the first symbol "e" in the look-ahead buffer. It finds
one at the "e" of the word easily. This e is at a distance (offset) of 8 from
the end of the search buffer. The encoder then matches as many symbols
following the two e's as possible. Three symbols "eas" match in this case,
so the length of the match is 3. The encoder then continues the backward
scan, trying to find longer matches. In our case, there is one more match, at
the word eastman, with distance 16, and it has the same length. The
encoder selects the longest match or, if they are all the same length, the
last one found and prepares the token (16, 3, "e").

Selecting the last match, rather than the first one, simplifies the
encoder, since it only has to keep track of the last match found. It is
interesting to note that selecting the first match, while making the program
somewhat more complex, also has an advantage. It selects the smallest
offset. It would seem that this is not an advantage, since a token should have
room for the largest possible offset.

Exercise: How does the decoder know whether the encoder selects the
first match or the last match?

sir˽sid˽eastman˽easily˽t eases˽sea˽sick˽seals ….

5

Data Compression Dictionary method

 In general, an LZ77 token has three parts: distance, length, and next
symbol in the look-ahead buffer (which, in our case, is the second e of the
word teases). This token is written on the output stream, and the window is
shifted to the right four positions: three positions for the matched string
and one position for the next symbol.

 Search buffer look-ahead buffer

If the backward search yields no match, an LZ77 token with zero

distance and length and with the unmatched symbol is written. This is also
the reason a token has to have a third component. distances with zero offset
and length are common at the beginning of any compression job, when the
search buffer is empty or almost empty. The first five steps in encoding our
example are the following:

 Search buffer look-ahead buffer
 sir˽sid˽eastman˽
 s ir˽sid˽eastman˽e
 si r˽sid˽eastman˽ea
 sir ˽sid˽eastman˽eas
 sir˽ sid˽eastman˽easi
 sir˽sid ˽eastman˽easily˽t

The output token (distance, length, next symbol) of the first five steps are
:
 (0,0, "s")
 (0,0, "i")
 (0,0, "r")
 (0,0, "˽")
 (4,2, "d")

In practice, the search buffer may be a few thousand bytes long, so the
offset (distance) size is typically 10-12 bits. In practice, the look-ahead
buffer is only a few tens of bytes long, so the size of the length field is just a
few bits. The size of the symbol field is typically 8 bits. The total size of
the output token (distance, length, next symbol) may typically be :

Output token = 11 + 5 + 8 = 24 bits.
Decoding

The decoder is much simpler than the encoder (LZ77 is thus an
asymmetric compression method). It has to maintain a buffer, equal in size
to the encoder's window. The decoder inputs a token, finds the match in its

sir˽sid˽eastman˽easily˽t ease s˽sea˽sick˽seals ….

6

Data Compression Dictionary method

buffer, writes the match and the third token field on the output stream,
and shifts the matched string and the third field into the buffer.

Because of the nature of the sliding window, the LZ77 method always
compares the look-ahead buffer to the recently input text in the search
buffer and never to text that was input long ago (and has thus been flushed
out of the search buffer). The method thus implicitly assumes that patterns
in the input data occur close together. Data that satisfies this assumption
will compress well.

argument

The basic LZ77 method was improved in several ways. One way to
improve it is to use variable-size "offset" and "length" fields in the tokens.
Another way is to increase the sizes of both buffers. Increasing the size of
the search buffer makes it possible to find better matches, but the tradeoff is
an increased search time. A large search buffer thus requires a more
sophisticated data structure that allows for fast search .

Ex (LZ77 Coding)

 Given the below search buffer and look-ahead buffer . apply the LZ77
compression method, show the resulted output token , and the dictionary
content at each step.

 Search buffer look-ahead buffer

Sol
 Search buffer look-ahead buffer

 ….that˽is ˽my˽hat˽ this˽is˽his˽hair
 that˽is˽my˽hat˽thi s˽is˽his˽hair
 that˽is˽my˽hat˽this˽i s˽his˽hair
 that˽is˽my˽hat˽this˽is˽h is˽hair
 that˽is˽my˽hat˽this˽is˽his˽ha ir
that˽is˽my˽hat˽this˽is˽his˽hair

The output token (distance, length, next symbol) of the first five steps are :
 (15,2, "i")
 (12,2, "i")
 (15,2, "h")
 (4, 4, "a")
 (24,1, "r")

that˽is ˽my˽hat˽ this˽is˽his˽hair…..

7

Data Compression Dictionary method

Ex (LZ77 DeCoding)

Given the below search buffer. For the following input token , apply the
LZ77 decompression method, show the resulted dictionary content at each
step.

 Search buffer

 ….that˽is ˽my˽hat˽

(15,2, "i") , (12,2, "i") , (15,2, "h") , (4,4, "a") , (24,1, "r")

LZ78

The LZ78 method ([Ziv 78] does not use any search buffer, look-ahead
buffer, or sliding window. Instead, there is a dictionary of previously
encountered strings. This dictionary starts empty (or almost empty), and its
size is limited only by the amount of available memory. The encoder outputs
two-field tokens. The first field is a pointer to the dictionary; the second is
the code of a symbol. Tokens do not contain the length of a string, since this
is implied in the dictionary. Each token corresponds to a string of input
symbols, and that string is added to the dictionary after the token is written
on the compressed stream. Nothing is ever deleted from the dictionary,
which is both an advantage over LZ77 (since future strings can be
compressed even by strings seen in the distant past) and a liability (since the
dictionary tends to grow fast and to fill up the entire available memory).

The dictionary starts with the null string at position zero. As symbols
are input and encoded, strings are added to the dictionary at positions 1, 2,
and so on. When the next symbol x is read from the input stream, the
dictionary is searched for an entry with the one-symbol string x. If none are
found, x is added to the next available position in the dictionary, and the
token (0, x) is output. This token indicates the string "null x" (a
concatenation of the null string and x). If an entry with x is found (at
position 37, say), the next symbol y is read, and the dictionary is searched
for an entry containing the two-symbol string xy. If none are found, then
string xy is added to the next available position in the dictionary, and the
token (37, y) is output. This token indicates the string xy, since 37 is the

8

Data Compression Dictionary method

dictionary position of string x. The process continues until the end of the
input stream is reached.

In general, the current symbol is read and becomes a one-symbol string.
The encoder then tries to find it in the dictionary. If the symbol is found in
the dictionary, the next symbol is read and concatenated with the first to
form a two-symbol string that the encoder then tries to locate in the
dictionary. As long as those strings are found in the dictionary, more
symbols are read and concatenated to the string. At a certain point the string
is not found in the dictionary, so the encoder adds it to the dictionary and
outputs a token with the last dictionary match as its first field, and the last
symbol of the string (the one that caused the search to fail) as its second
field. Table 1. below shows the first 14 steps in encoding the string

"sir˽sid˽eastman˽easily˽teases˽sea˽sick˽seals".

dictionary Token (output) dictionary Token (output)
0 null
1 "s" (0, "s") 8 "a" (0, "a")
2 "i" (0, "i") 9 "st" (1, "t")
3 "r" (0, "r") 10 ''m'' (0, ''m'')
4 "˽" (0, "˽") 11 "an" (8, "n")
5 "si" (1, "i") 12 "˽ea" (7, "a")
6 "d" (0, "d") 13 "sil" (5,"1")
7 "˽e" (4, "e") 14 "y" (0, "y")

 Table 1 : First 14 Encoding Steps in LZ78.

In each step, the string added to the dictionary is the one being encoded,

minus its last symbol. In a typical compression run, the dictionary starts
with short strings, but as more text is being input and processed, longer
and longer strings are added to it. The size of the dictionary can either be
fixed or may be determined by the size of the available memory each time
the LZ78 compression program is executed. A large dictionary may contain
more strings and thus allow for longer matches, but the tradeoff is longer
pointers (and thus bigger tokens) and slower dictionary search.

Since the total size of the dictionary is limited (because the number of
bits that allocated to the dictionary pointer are 16 bits), it may fill up during

9

Data Compression Dictionary method

compression. This, in fact, happens all the time except when the input stream
is unusually small.

When the dictionary is full, delete some of the least recently used
entries, to make room for new ones. Unfortunately there is no good
algorithm to decide which entries to delete, and how many.

LZ78 Decoding

The LZ78 decoder works by building and maintaining the dictionary in
the same way as the encoder does.

It reads its input stream (which consists of a pointers to the dictionary
and its corresponding letter) and uses each pointer to retrieve uncompressed
symbols from its dictionary and write them on its output stream.

1. The dictionary starts with the null string at position zero. As symbols
are input and decoded, strings are added to the dictionary at positions
1, 2, and so on.

2. Read the input stream (pointers to the dictionary and its
corresponding letter) :
a. If the pointer is equal to zero, then the letter is outputted, and

added to the next available position in the dictionary.
b. If the pointer is greater than zero , then concatenate the letter with

the letter(s) in the dictionary that correspond to the pointer, the
concatenated letters is outputted, and added to the next available
position in the dictionary.

Ex
What is the output and the new dictionary entry of the LZ78 decompression
method to the below code :
(0, "s"), (0, "i"), (0, "r"), (0, "˽"), (1, "i"), (0, "d"), (4, "e"), (0, "a"), (1, "t"),
(0, ''m''), (8, "n"), (7, "a") , (5,"1"), (0, "y")
Sol

dictionary output dictionary output
0 null
1 "s" s 8 "a" a
2 "i" i 9 "st" st
3 "r" r 10 ''m'' m
4 "˽" ˽ 11 "an" an
5 "si" si 12 "˽ea" ˽ea
6 "d" d 13 "sil" si1
7 "˽e" ˽e 14 "y" y

10

Data Compression Dictionary method

LZW
This is method is developed by Terry Welch in 1984. An LZW token

consists of just a pointer to the dictionary. To best understand LZW, we will
temporarily forget that the dictionary is a tree, and will think of it as an array
of variable-size strings. The LZW method starts by initializing the dictionary
to all the symbols in the alphabet. In the common case of 8-bit symbols, the
first 256 entries of the dictionary (entries 0 through 255) are occupied before
any data is input. Because the dictionary is initialized, the next input
character will always be found in the dictionary. This is why an LZW token
can consist of just a pointer and does not have to contain a character code as
in LZ77 and LZ78.

The principle of LZW is that the encoder inputs symbols one by one and
accumulates them in a string I. After each symbol is input and is
concatenated to I, the dictionary is searched for string I. As long as I is
found in the dictionary, the process continues. At a certain point, adding the
next symbol x causes the search to fail; string I is in the dictionary but
string Ix (symbol x concatenated to I) is not. At this point the encoder

(1) outputs the dictionary pointer that points to string I.
(2) saves string Ix (which is now called a phrase) in the next available

dictionary entry.
(3) initializes string I to symbol x.

To illustrate this process, we again use the text string
"sir˽sid˽eastman˽easily˽teases˽sea˽sick˽seals". The steps are as
follows:
1. Initialize entries 0-255 of the dictionary to all 256 8-bit bytes.
2. The first symbol "s" is input and is found in the dictionary (in entry 115,

since this is the ASCII code of "s"). The next symbol "i" is input, but
"si" is not found in the dictionary. The encoder performs the following:
(1) outputs 115.

 (2) saves string "si" in the next available dictionary entry (entry 256).
 (3) initializes I to the symbol "i".
3. The "r" of sir is input, but string "ir" is not in the dictionary. The

encoder :
(1) outputs 105 (the ASCII code of "i").
(2) saves string "ir" in the next available dictionary entry (entry 257).
(3) initializes I to the symbol "r".

Table 2 summarizes all the steps of this process. Table 3 shows some of the
original 256 entries in the LZW dictionary plus the entries added during
encoding of the string above.

11

Data Compression Dictionary method

The complete output stream is (only the numbers are output, not the strings
in parentheses) as follows:
115 (s), 105 (i), 114 (r), 32 (˽), 256 (si), 100 (d), 32 (˽), 101 (e), 97 (a), 115
(s), 116 (t), 109 (m), 97 (a), 110 (n), 262 (˽e), 264 (as), 105 (i), 108 (1), 121
(y), 32 (˽), 116 (t), 263 (ea), 115 (s), 101 (e), 115 (s), 259 (us), 263 (ea), 259
(˽s), 105 (i), 99 (c), 107 (k), 281 (˽se), 97 (a), 108 (1), 115 (s), eof.

 in new in new
I dict? Entry output I diet? entry output
--
s Y y Y
si N 256-si 115 (s) y˽ N 274-y˽ 121 (y)
i Y ˽ Y
ir N 257-ir 105 (i) ˽t N 275-˽t 32 (˽)
r Y t Y
r˽ N 258-r ˽ 114 (r) te N 276-te 116 (t)
˽ Y e Y
˽s N 259-˽s 32 (˽) ea Y
s Y eas N 277-eas 263 (ea)
si Y s Y
sid N 260-sid 256 (si) se N 278-se 115 (s)
d Y e Y
d˽ N 261-d˽ 100 (d) es N 279-es 101 (e)
˽ Y s Y
˽e N 262-˽e 32 (˽) s˽ N 280-s˽ 115 (s)
e Y ˽ Y
ea N 263-ea 101 (e) ˽s Y
a Y ˽se N 281-˽se 259 (˽s)
as N 264-as 97 (a) e Y
s Y ea Y
st N 265-st 115 (s) ea˽ N 282-ea˽ 263 (ea)
t Y ˽ Y
tm N 266-tm 116 (t) ˽s Y
m Y ˽si N 283-˽si 259 (˽s)
ma N 267-ma 109 (m) i Y
a Y ic N 284-ic 105 (i)
an N 268-an 97 (a) c Y
n Y ck N 285-ck 99 (c)
n˽ N 269-n˽ 110 (n) k Y
˽ Y k˽ N 286-k˽ 107 (k)

12

Data Compression Dictionary method

˽e Y ˽ Y
˽ea N 270-˽ea 262 (˽e) ˽s Y
a Y ˽se Y
as Y ˽sea N 287-˽sea 281 (˽se)
asi N 271-asi 264 (as) a Y
i Y al N 288-al 97 (a)
il N 272-il 105 (i) 1 Y
l Y 1s N 289-ls 108 (1)
ly N 273-ly 108 (1) s Y
 s,eof N 115 (s)

Table 2: LZW Encoding of "sir sid eastman easily teases sea sick seals".

Index Symbol Index Symbol Index Symbol Index Symbol

0
1
:

32
:

97
98
99
100
101

:
107
108
109

NULL
SOH

:
Space

:
a
b
c
d
e
:
k
l

m

110
:

115
116

:
121

:
255
256
257
258
259
260
261

n
:
s
t
:
y
:

255
si
ir
r˽
˽s
sid
d˽

262
263
264
265
266
267
268
269
270
271
272
273
274
275

˽e
ea
as
st
tm
ma
an
n˽
˽ea
asi
il
ly
y˽
˽t

276
277
278
279
280
281
282
283
284
285
286
287
288
289

te
eas
se
es
s˽
˽se
ea˽
˽si
ic
ck
k˽

˽sea
al
ls

 Table 3: An LZW Dictionary.
for i:=0 to 255 do
 append i as a 1-symbol string to the dictionary;
append λ to the dictionary;
di:=dictionary index of λ;
repeat
 read(ch);
 if «di,ch» is in the dictionary then

13

Data Compression Dictionary method

 di:=dictionary index of «di,ch»;
 else
 output(di);
 append «di,ch» to the dictionary;
 di:=dictionary index of ch;
 endif ;
until end-of-input;

The LZW Algorithm.

Above is a pseudo-code listing of the algorithm. We denote by λ the
empty string, and by «a, b» the concatenation of strings a and b.

The line "append «di, ch» to the dictionary" is of special interest. It is
clear that in practice, the dictionary may fill up. This line should therefore
include a test for a full dictionary, and certain actions for the case where it is
full.

Since the first 256 entries of the dictionary are occupied right from the
start, pointers to the dictionary have to be longer than 8 bits. A simple
implementation would typically use 16-bit pointers, which allow for a 64K-
entry dictionary (where 64K = 216 = 65,536). Such a dictionary will, of
course, fill up very quickly in all but the smallest compression jobs. Another
interesting fact about LZW is that strings in the dictionary get only one
character longer at a time. It therefore takes a long time to get long strings
in the dictionary, and thus a chance to achieve really good compression. We
can say that LZW adapts slowly to its input data.

<> Exercise 1 : Use LZW to encode the string "alf˽eats˽alfalfa". Show the
encoder output and the new entries added by it to the dictionary.

<> Exercise 2 : Analyze the LZW compression of the string "aaaa ... ".

14

Data Compression Dictionary method

LZW Decoding
In order to understand how the LZW decoder works, we should first

recall the three steps the encoder performs each time it writes something on
the output stream. They are (1) it outputs the dictionary pointer that points
to string I, (2) it saves string Ix in the next available entry of the dictionary,
and (3) it initializes string I to symbol x.

The decoder starts with the first entries of its dictionary initialized to all
the symbols of the alphabet (normally 256 symbols). It then reads its input
stream (which consists of pointers to the dictionary) and uses each pointer to
retrieve uncompressed symbols from its dictionary and write them on its
output stream. It also builds its dictionary in the same way as the encoder
(this fact is usually expressed by saying that the encoder and decoder are
synchronized, or that they work in lockstep).

In the first decoding step, the decoder inputs the first pointer and uses it
to retrieve a dictionary item I. This is a string of symbols, and it is written
on the decoder's output stream. String Ix needs to be saved in the dictionary,
but symbol x is still unknown; it will be the first symbol in the next string
retrieved from the dictionary.

In each decoding step after the first, the decoder inputs the next pointer,
retrieves the next string J from the dictionary, writes it on the output
stream, isolates its first symbol x, and saves string Ix in the next available
dictionary entry (after checking to make sure string Ix is not already in the
dictionary). The decoder then moves J to I and is ready for the next step.

In our "sir˽sid ... " example, the first pointer that's input by the decoder is
115. This corresponds to the string "s", which is retrieved from the
dictionary, gets stored in I and becomes the first thing write "i" is
retrieved into J and is also written on the output stream. J's first symbol is
concatenated with I , to form string "si", which does not exist in the
dictionary, and is therefore added to it as entry 256. Variable J is moved to
I, so I is now the string "i". The next pointer is 114, so string "r" is
retrieved from the dictionary into J and is also written on the output stream.
J's first symbol is concatenated with I , to form string "ir", which does not
exist in the dictionary, and is added to it as entry 257. Variable J is moved to
I, so I is now the string "r". The next step reads pointer 32, writes "˽" on
the output stream, and saves string "r˽".
o Exercise 3 : Decode the string "alf˽eats˽alfalfa" by using the encoding

results from Exercise 1.
o Exercise 4: Assume a two-symbol alphabet with the symbols a and b.

show the first few steps for encoding and decoding the string "ababab ... " .

15

Data Compression Dictionary method

Ex
Given the below basic dictionary

0 1 2 3 4 5 6 7 8
˽ a c f h n o s t

What is the output and the new dictionary entry of the LZW decompression
method to the below code :
7, 4, 1, 5, 6, 5, 0, 3, 258, 6, 0, 2, 258, 0, 259, 8.

Sol

256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
sh ha an no on n˽ ˽f fa ano o˽ ˽c ca an˽ ˽n not

output New entry
7(s)
4(h) 256(sh)
1(a) 257(ha)
5(n) 258(an)
6(0) 259(no)
5(n) 260(on)
0 (˽) 261(n˽)
3(f) 262(˽f)
258(an) 263(fa)
6(o) 264(ano)
0(˽) 265(o˽)
2(c) 266(˽c)
258(an) 267(ca)
0(˽) 268(an˽)
259(no) 269(˽n)
8(t) 270(not)

16

Data Compression Arithmetic method

Arithmetic Coding

The Huffman method is more efficient than the Shannon-Fano method,
but either method rarely produces the best variable-size code. In fact these
methods produce best results (codes whose average size equals the entropy
and hence efficiency of 100 %) only when the symbols have probabilities
of occurrence that are negative powers of 2. This is because these methods
assign a code with an integral number of bits to each symbol in the alphabet.
A symbol with probability 0.4 should ideally be assigned a 1.32-bit code,
since -log2 0.4 ~ 1.32. The Huffman method, however, normally assigns
such a symbol a code of 1 or 2 bits.

Arithmetic coding overcomes this problem by assigning one (normally
long) code to the entire input stream, instead of assigning codes to the
individual symbols. The method reads the input stream symbol by symbol
and appends more bits to the code each time a symbol is input and
processed. To understand the method, it is useful to imagine the resulting
code as a number in the range [0,1). [The notation [a, b) means the range of
real numbers from a to b, not including b. The range is "closed" at a and
"open" at b.

The first step is to calculate, or at least to estimate, the frequencies of
occurrence of each symbol. For best results, the exact frequencies are
calculated by reading the entire input stream in the first pass of a two-pass
compression job. If the program has good estimates of the frequencies from
a different source, the first pass may be omitted.

Example 1

Given three symbols a1, a2, and a3, with probabilities P1 = 0.4, P2 =
0.5, and P3 = 0.1, respectively. The interval [0,1) is divided among the three
symbols by assigning each a subinterval proportional in size to its
probability. The order of the subintervals is immaterial. In our example, the
three symbols are assigned the subintervals [0,0.4), [0.4,0.9), and [0.9,1.0).

Symbols probability Range
 a3 0.1 [0.9 , 1.0)
 a2 0.5 [0.4 , 0.9)
 a1 0.4 [0.0 , 0.4)

To encode the string "a2a2a2a3", we start with the interval [0,1). The

first symbol a2 reduces this interval to the subinterval from its 40% point to
its 90% point; hence, the result is [0.4,0.9).

2

Data Compression Arithmetic method

The second a2 reduces [0.4,0.9) in the same way (see note below) to
[0.6,0.85), the third a2 reduces this to [0.7,0.825), and the a3 reduces this to
the stretch from the 90% point of [0.7,0.825) to its 100% point, producing
[0.8125,0.8250). The final code our method produces can be any number
in this final range.
The following rules summarize the main steps of arithmetic coding:
1. Start by defining the "current interval" as [0,1).
2. Repeat the following two steps for each symbol s in the input stream:

2.1. Divide the current interval into subintervals whose sizes are
proportional to the symbols' probabilities.

2.2. Select the subinterval for s and define it as the new current interval.
3. When the entire input stream has been processed in this way, the output
should be any number that uniquely identifies the current interval (i.e., any
number inside the current interval).

Table below show the calculation of the ranges of the arithmetic coding
for the above example :

Char calculation of low and high

 a2 L 0 + (1 – 0) * 0.4 = 0.4
 H 0 + (1 – 0) * 0.9 = 0.9
 a2 L 0.4 + (0.9 – 0.4) * 0.4 = 0.6
 H 0.4 + (0.9 – 0.4) * 0.9 = 0.85
 a2 L 0.6 + (0.85 – 0.6) * 0.4 = 0.7
 H 0.6 + (0.85 – 0.6) * 0.9 = 0.825
 a3 L 0.7 + (0.825 – 0.7) * 0.9 = 0.8125
 H 0.7 + (0.825 – 0.7) * 1.0 = 0.825

Where Low and High are being calculated according to:

NewLow = OldLow + Range * LowRange(X);
NewHigh = OldLow + Range * HighRange(X);

Where:
Range=OldHigh - OldLow
LowRange (X), HighRange (X) indicates the low and high limits of the

range of symbol X, respectively.
For each symbol processed, the current interval gets smaller, so it takes

more bits to express it, but the point is that the final output is a single
number and does not consist of codes for the individual symbols. The

3

Data Compression Arithmetic method

average code size can be obtained by dividing the size of the output (in bits)
by the size of the input (in symbols).

Example 2

In this example, we show the compression steps for the short string
"SWISS˽MISS". Table 1 shows the information prepared in the first step
(the statistical model of the data). The five symbols appearing in the input
may be arranged in any order. For each symbol, its frequency is first
counted, followed by its probability of occurrence (the frequency divided by
the string size, 10). The range [0,1) is then divided among the symbols, in
any order, with each symbol getting a chunk, or a subrange, equal in size to
its probability. Thus "s" gets the subrange [0.5,1.0) (of size 0.5), whereas the
subrange of "I" is of size 0.2 [0.2,0.4).

The symbols and Probabilities in Table 1 are written on the output
stream before any of the bits of the compressed code. This table will be the
first thing input by the decoder (i.e. the decoder must receive this table
before it start decompression).

Symbols probability Range
 S 0.5 [0.5 , 1.0)
 W 0.1 [0.4 , 0.5)
 I 0.2 [0.2 , 0.4)
 M 0.1 [0.1 , 0.2)
 ˽ 0.1 [0.0 , 0.1)

Table 1. Probabilities and Ranges of "SWISS˽M1SS" Symbols

The encoding process starts by defining two variables, Low and High,

and setting them to 0 and 1, respectively. They define an interval [LOW,
High). As symbols are being input and processed, the values of Low and
High are moved closer together, to narrow the interval.

After processing the first symbol "S", Low and High are updated to 0.5
and 1, respectively. The resulting code for the entire input stream will be a
number in this range (0.5 ≤ Code < 1.0). The rest of the input stream will
determine precisely where, in the interval [0.5,1), the final code will lie.

Table 2 below show the calculation of the ranges of the arithmetic
coding for the example 2 above :

4

Data Compression Arithmetic method

 Table 2. the process of arithmetic encoding

The final code is the final value of Low 0.71753375 , recall that :

NewLow = OldLow + Range * LowRange(X);
NewHigh = OldLow + Range * HighRange(X);
where
Range=OldHigh - OldLow
LowRange (X), HighRange (X) indicate the low and high limits of the

range of symbol X, respectively.

5

Data Compression Arithmetic method

Decoding
The decoder works in the opposite way. It starts by inputting the

symbols and their ranges (Table of Probabilities and Ranges of inputted
Symbols).
Example 1

The decoder starts by reading the code 0.8125. The first digit is "8", so
the decoder immediately knows that the entire code is a number of the form
0.8.... , this number is inside the sub range [0.4, 0.9) of a2, so the first
symbol is a2. The decoder then eliminates the effect of symbol a2 from the
code by subtracting the lower limit 0.4 of a2 and dividing by the width of the
sub range of a2 (0.5). The result is 0.825, which tells the decoder that the
next symbol is a2 (since the sub range of a2 is [0.4, 0.9).

Table below show the extracting of the symbols from the arithmetic
code for the Example 1 above :

Code = 0.8125 x = a2 because a2 rang is [0.4 , 0.9)
Code = (0.8125 – 0.4) / 0.5 = 0.825 x = a2
Code = (0.825 – 0.4) / 0.5 = 0.85 x = a2
Code = (0.85 – 0.4) / 0.5 = 0.9 x = a3
Code = (0.9 – 0.9) / 0.1 = 0.0 end of decoding

To eliminate the effect of symbol X from the code, the decoder performs

the operation :

Code = (Code - LowRange (X)) / Range
 where Range is the width of the sub range of X.

Example 2
The decoder start by reading the code 0.71753375, The first digit is

"7", so the decoder immediately knows that the entire code is a number of
the form 0.7.... , this number is inside the sub range [0.5, 1) of S, so the first
symbol is S. The decoder then eliminates the effect of symbol S from the
code by subtracting the lower limit 0.5 of S and dividing by the width of the
sub range of S (0.5). The result is 0.4350675, which tells the decoder that the
next symbol is W (since the sub range of W is [0.4, 0.5)).

To eliminate the effect of symbol X from the code, the decoder performs
the operation

Code = (Code - LowRange (X)) / Range
where Range is the width of the sub range of X.

6

Data Compression Arithmetic method

Table 3 summarizes the steps for decoding our example 2 above :

 Table 3 . The process of Arithmetic Decoding

Skewed Probabilities Problem

The next example is of three symbols with probabilities as shown in
Table below. Notice that the probabilities are very different. One is large
(97.5%) and the others much smaller. This is a case of skewed probabilities
problem.

Symbols probability Range
 a1 0.001838 [0.998162, 1.0)
 a2 0.975 [0.023162, 0.998162)
 a3 0.023162 [0.0 , 0.023162)

Encoding the string a2a2ala3a3 produces the strange numbers (accurate

to 16 digits) in Table 4, where the two rows for each symbol correspond to
the Low and High values, respectively. At first glance, it seems that the
resulting code is longer than the original string.

Decoding this string is shown in Table 5 involves a special problem.
After eliminating the effect of a1, on line 3, the result is 0. Earlier, we
implicitly assumed that this means the end of the decoding process, but
now we know that there are two more occurrences of a3 that should be
decoded. These are shown on lines 4, 5 of the table. This problem always
occurs when the last symbol in the input stream is the one whose subrange
starts at zero.

7

Data Compression Arithmetic method

 Table 4. Encoding the String a2a2a1a3a3

 Table 5. Decoding the String a2a2a1a3a3

In order to distinguish between such a symbol and the end of the input

stream, we need to define an additional symbol, the end-of-input (or end-of-
file, eof). This symbol should be added, with a small probability, to the
frequency table (as the first symbol; see Table below), and it should be
added and encoded at the end of the input stream.

Symbols probability Range
 eof 0.000001 [0.999999, 1.0)
 a1 0.001837 [0.998162, 0.999999)
 a2 0.975 [0.023162, 0.998162)
 a3 0.023162 [0.0 , 0.023162)

Tables 6 and 7 show how the string a3a3a3a3eof is encoded into the

number 0.0000002878086184764172, and then decoded properly. Without
the eof symbol, a string of all a3s would have been encoded into a 0.

8

Data Compression Arithmetic method

Table 6. Encoding the String a3a3a3a3eof

Table 7. Decoding the String a3a3a3a3eof

Notice how the low value is 0 until the eof is input and processed, and

how the high value quickly approaches 0. Now is the time to mention that
the final code does not have to be the final low value but can be any
number between the final low and high values. In the example of
a3a3a3a3eof, the final code can be the much shorter number
0.0000002878086 (or 0.0000002878087 or even 0.0000002878088).

9

Data Compression Arithmetic method

If the size of the input stream is known, it is possible to do without an
eof symbol. The encoder can start by writing this size (unencoded) on the
output stream. The decoder reads the size, starts decoding, and stops when
the decoded stream reaches this size. If the decoder reads the compressed
stream byte by byte, the encoder may have to add some zeros at the end, to
make sure the compressed stream can be read in groups of 8 bits.

10

