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Data Compression                                                                                                                              Introduction  

 Introduction to Data Compression 
1. Previe 

Data compression has been pushed to the forefront of the computer 
science field. This is largely a result of the rapid growth in the multimedia 
market, and the   advent of the World Wide Web, which makes the internet 
easily accessible for everyone. 

Data compression addresses the problem of reducing the amount of 
data required to represent a digital file, so that it can be stored or 
transmitted so efficiently.  

The principle of data compression is that, it compresses data by 
removing redundancy from the original data in the source file. 

On the other hand, information theory tells us that the amount of 
information conveyed by an event relates to its probability of occurrence. 
An event that is less likely to occur is said to contain more information than 
an event that is more likely to occur. The amount of information of an event 
and its probability are thus opposite.  

Amount of information     probability                  compression     probability 

 

It is obvious that information theory is the base theory that data 
compression rely on.  

         The problem of representing the source alphabet symbols Si in term of 
another system of symbols (usually the binary system consisting of the two 
symbols 0 & 1) is the main topic of coding theory. 

An optimum coding scheme will use more bits for the symbols that 
less likely to occur, and a fewer bits for the symbols that frequently occur. 

        Logically speaking, coding theory leads to information theory and 
information theory provides the bounds on what can be done by suitable 
encoding of the information. Thus the two theories are intimately related. 
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Before delivering into the details, we discuss important data 
compression terms: 

2. Data Compression Terminology 

Data compression is the process of converting an input data stream (the 

source stream or the original raw data) into another data stream (the output, 

or the compressed, stream) that has a smaller size. A stream is either a file or 

a buffer in memory. Data compression is popular because of two reasons:  

 1.  People like to accumulate data and hate to throw anything away. No 

matter how big a storage device one has, sooner or later it is going to 

overflow. Data compression seems useful because it delays this inevitability.  

2.  People hate to wait a long time for data transfers. When sitting at the 

computer, waiting for a Web page to come in, or for a file to download, we 

naturally feel that anything longer than a few seconds is a long time to wait. 

There are many known methods for data compression. They are based on 

different ideas, are suitable for different types of data, and produce different 

results, but they are all based on the same principle, namely, they compress 

data by removing redundancy from the original data in the source file. Any 

nonrandom collection data has some structure, and this structure can be 

exploited to achieve a smaller representation of the data, a representation 

where no structure is discernible.  

The idea of compression by reducing redundancy suggests the general 

law of data compression, which is to "assign short codes to common events 

(symbols or phrases) and long codes to rare events." There are many ways 

to implement this law, and an analysis of any compression method shows 

that, deep inside, it works by obeying the general law. 
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Type of  Redundancy 

1. Text redundancy : 

• In typical English text, for example, the letter E appears very 

often, while Z is rare. This is called alphabetic redundancy, and 

suggests assigning variable-size codes to the letters, with E 

getting the shortest code and Z, the longest one. 

• Another type of redundancy, contextual redundancy, is 

illustrated by the fact that the letter Q is almost always followed 

by the letter U (i.e., that certain diagrams and trigrams are more 

common in plain English than others).   

2. Images redundancy is illustrated by the fact that in a nonrandom 

image, adjacent pixels tend to have similar colors. 

3. Video redundancy is illustrated by the fact that in a nonrandom video 

consecutive frame tend to be similar. 

 

 

The principle of compressing by removing redundancy also answers the 

following question: "Why is it that an already compressed file cannot be 

compressed further?" The answer, of course, is that such a file has little or 

no redundancy, so there is nothing to remove. An example of such a file is 

random text. When such a file is compressed, there is no redundancy to 

remove. If we assume that   there was a possibility to compress an already 

compressed file, then successive compressions would reduce the size of the 

file until it becomes a single byte, or even a single bit. This, of course, is 

ridiculous since a single byte cannot contain the information present in an 

arbitrarily large file.) 
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Data compression is achieved by reducing redundancy, but this also 

makes the data less reliable, more prone to errors. Making data more 

reliable, on the other hand, is done by adding check bits and parity bits, a 

process that increases the size of the codes, thereby increasing redundancy. 

Data compression and data reliability are thus opposites.  

Before delving into the details, we discuss important data compression 

terms. 

• The compressor or encoder is the program that compresses the raw 

data in the input stream and creates an output stream with compressed (low-

redundancy) data. The decompressor or decoder converts in the opposite 

direction.  

• The term "stream" is used throughout these lectures instead of "file". 

"Stream" is a more general term because the compressed data may be 

transmitted directly to the decoder, instead of being written to a file and 

saved. Also, the data to be compressed may be downloaded from a network 

instead of being input from a file. 

• For the original input stream we use the terms un encoded, raw data. 

The contents of the final, compressed, stream is considered the encoded or 

compressed data. The term bit stream is also used in the literature to 

indicate the compressed stream. 

 
3. Type of Data Compression 

 
• A non adaptive compression method is rigid and does not modify its 

operations, its parameters, or its tables in response to the particular data 

being compressed. Such a method is best used to compress data that is all 

of a single type. Examples are the Group 3 and Group 4 methods for 

facsimile compression. They are specifically designed for facsimile 
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compression and would do a poor job compressing any other data. In 

contrast, an adaptive method examines the raw data and modifies its 

operations and/or its parameters accordingly. An example is the adaptive 

Huffman method. Some compression methods use a 2-pass algorithm, 

where the first pass reads the input stream to collect statistics on the data to 

be compressed, and the second pass does the actual compressing using 

parameters set by the first pass. Such a method may be called semi 

adaptive.  

 
•  Lossy / lossless compression: Certain compression methods are lossy. 

They achieve better compression by losing some information. When the 

compressed stream is decompressed, the result is not identical to the 

original data stream. Such a method makes sense especially in compressing 

images, movies, or sounds. If the loss of data is small, we may not be able 

to tell the difference. In contrast, text files, especially files containing 

computer programs, may become worthless if even one bit gets modified. 

Such files should be compressed only by a lossless compression method, 

also special purpose images like medical images, forensic images, NASA 

images are compressed using lossless compression methods.   

 

• Symmetrical compression is the case where the compressor and 

decompressor use basically the same algorithm but work in "opposite" 

directions. Such a method makes sense for general work, where the same 

number of files is compressed as are decompressed. In an asymmetric 

compression method either the compressor or the decompressor may have 

to work significantly harder ( i. e. each one uses a different algorithm ). 
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4. Benefits of data compression 

The digital representation of the data usually required a very large 
number of bits. In many applications, it is important to   consider techniques 
for representing data with fewer bits, while maintaining an acceptable 
fidelity of data quality. 

The main benefits of data compression are the follow : 

1. Reducing the storage requirement or saving the storage space. 
2. Potential cost saving associated with sending less data over 

communication channels ( e.g. the cost of call is usually depend on 
its duration ). 

3. Compression can reduce the probability of transmission error 
occurring since fewer characters are transmitted when data is 
compressed. 

4. By converting the original data that is represented by conventional 
code into a different (compressed) code, compression algorithms may 
provide a level of security. 

5. Reducing the time required for transmission of the total original 
image by transmitting its compressed version.   

 

5. Compression Performance 

Most compression methods are physical. They look only at the bits in 
the input  stream and ignore the meaning of the data items in the input (e.g., 
the data items may be words, pixels, or sounds). Such a method translates 
one bit stream into another, shorter, one. The only way to make sense of the 
output stream (to decode it) is by knowing how it was encoded. 

 

Compression Factor  

Data compression involves reducing the size of data file, while retaining 
necessary information. The reduced file is called the compressed file and is 
used to reconstruct the original file, resulting in the decompressed file. The 
original file, before any compression is performed is called the 
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uncompressed file. The ratio of the original, uncompressed file and the 
compressed file is referred to as the compression factor. The compression 
factor is denoted by: 

 Compression Factor = 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑛𝑝𝑢𝑡 𝑠𝑡𝑟𝑒𝑎𝑚
𝑠𝑖𝑧𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑜𝑢𝑡𝑝𝑢𝑡 𝑠𝑟𝑒𝑎𝑚 

 

                                 =  𝑈𝑛𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑓𝑖𝑙𝑒 𝑠𝑖𝑧𝑒
𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑓𝑖𝑙𝑒 𝑠𝑖𝑧𝑒 

 =  𝑠𝑖𝑧𝑒𝑈
𝑠𝑖𝑧𝑒𝐶 

 

It is often written as sizeU : sizeC. 

In this case value greater than 1 indicates compression, and values less 
than 1 imply expansion. This measure seems natural to many people, since 
the bigger the factor, the better the compression. 

 

Example 1 

The original image is 256 × 256 pixel. Single-band ( gray scale ) 8 bits 
per pixel. This file size is 65,536 byte ( 64 k ). After compression the image 
file size is became 6,554 bytes. Compute the compression Factor. 

Sol     

Compression Factor = 𝑈𝑛𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑓𝑖𝑙𝑒 𝑠𝑖𝑧𝑒
𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑓𝑖𝑙𝑒 𝑠𝑖𝑧𝑒 

=65536
6554

 = 9.9999 = 10 

This can also be written as 10:1. 

This is called "10 to 1 compression" or a "10 times compression" or it 
can be stated as "compressing the image to 1/10 its original size".  

Bit Per Pixel 

Another way to state the compression of an image is to use the 
terminology of bit per pixel. For an N×N image. 

Bit per pixel = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐵𝑖𝑡𝑠 (𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑓𝑖𝑙𝑒)
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑖𝑥𝑒𝑙𝑠 ( 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑓𝑖𝑙𝑒 ) 

 = (8) (𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐵𝑦𝑡𝑒𝑠)
𝑁×𝑁 
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Example 2 

Using the preceding example, with a compression factor of 65,536/6,554 
bytes,  we want to express this as bits per pixel. This is done by first finding 
the number of pixels in the image = 256×256=65,536 pixels. We then find 
the number of bits in the compressed image file = (6,554 bytes) (8 
bits/bytes) = 52,432 bits. Now we can find the bits per pixel by taking the 
ratio:   

Bit per pixel = 52,532
65,536 

  = 0.8 bits/pixel. 

The reduction in the file size is necessary to meet the bandwidth 
requirement for many transmission systems, as well as the storage 
requirement in computer data bases. The amount of data required for digital 
images is enormous. For example, a single 512 × 512, 8-bit image required 
2,097,152 bits for storage. If we wanted to transmit this image over the 
World Wide Web, it would probably take minutes for transmission- too long 
for most people to wait. 

Example 3 

To transmit an RGB ( true color ) 512 × 512, 24-bit ( 8 bit / color ) 
image via modem at 28.8 kbaud (kilobits/second), it would take about : 

  (512 × 512 pixels) ( 24 bit/pixels)
( 28.8 ×1024 𝑏𝑖𝑡𝑠/𝑠𝑒𝑐𝑜𝑛𝑑 ) 

 = 213 seconds = 3.6 minutes 

Example 4 

A colored video clip of 4 second duration with a frame size of 160×120 
pixels and    a frame rate of 30 frames per second, is to be transmitted via   
modem at 28.8 kbaud (kilobits/second), it would take about   

(160 × 120 pixels) � 24 bit
pixels� ( 4 secons )( 30 frame /second)

( 28.8 ×1024 𝑏𝑖𝑡𝑠/𝑠𝑒𝑐𝑜𝑛𝑑 ) 
  = 1875 seconds 

                                                                            = 31.25 minutes 

The above results show the necessity of data compression especially in 
images and movies transmission.    
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Self Information ( ideally length of the code ) 
In Information theory , the function  I  of the probability Pi ( I =  -log2 Pi  bit ) 

measures the amount of  uncertainty, surprise, or  information that the event 
contains. 

If an event of low probability occurs, it causes greater surprise, and hence 
conveys more information than the occurrence of an event of High probability. 
Thus the information is connected with the element of surprise, which is a result 
of uncertainty. The more unexpected the event, the greater the surprise, and 
hence more information. Thus the probability of occurrence is related to the 
information content. If  P  is the probability of occurrence of a message and  I  is 
the information gained from the message, it is evident that when P→1  then  I→0, 
on the other hand when P→0 then I→∞, and in general a smaller P gives larger I. 

While in data compression the function ( I =  -log2 Pi ) measure the ideally 
length of the code, hence, whenever the symbol has a high probability ( i.e.  
frequently occur ) it will be assigned a shorter code. 

    Probability        self information                  Probability          Code length   

 

 

 

 Average Information -Entropy ( ideally average length of the code) 

In practice we are interested in the average information conveyed  H (entropy), 
than in the specific information of each symbol where:   

H = -∑ 𝑃𝑖 𝑙𝑜𝑔 𝑃𝑖 𝑛
𝑖=1   bits \ symbol 

       The function H of the probability distribution Pi  measures the amount of 
randomness   ( in other words information ) the distribution contains. the more 
randomness that exist in the data the more information that data contains. 

                            randomness       Amount of information 
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While in data compression the function ( H ) measure the ideally average 
length of the code, hence, whenever the source symbols have a high entropy 
those symbols  will be assigned a longer code. Hence, the more randomness that 
exist in the data , the more bits per pixel  are required to represent the data and that 
leads to less compression. 

randomness     average length of the code            randomness      compression    

 

 

It is obvious that information theory is the base theory that data compression 
based on. 

Entropy  ھو مقیاس لتشتت المعلومات. 

 .عالیة  Informationوتكون )   عشوائیة عالیة ( عالیة   Hكلما تكون   Symbolsكلما یزداد عدد ال  

 . أقل   Compressionیكون ال )  عشوائیة عالیة ( عالیة   Hكلما تكون 

 

entropy          عاليRandomness          عاليInformation  عالیة        Compression  قلیل 

    Hmax(xi) = log2 M  and this happen only when Pi = 1
𝑀

   for all values of i   

Ex 

entropy  للشخص الذي یعرف كلمتینno    وyes  )ھو ) وباحتمالات متساویة 
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entropy   للشخص الذي یعرف ثلاث كلمات وباحتمالات متساویة ھو 

H = -( 
3
1log

3
1

3
1log

3
1

3
1log

3
1

++ )  = 1.58 

entropy   للشخص الذي یعرف اربع كلمات وباحتمالات متساویة ھو 

H = -( +++
4
1log

4
1

4
1log

4
1

4
1log

4
1  

4
1log

4
1 )  = 2 



Data Compression                                                                                                                                      Statistical Methods 

 " yes" للشخص الذي یعرف كالمة واحدة فقط مثل كلمة  entropyبینما  

H = - 1 log 1  =  0  

When calculating  the ideally length of the code for the above example ,  we 

can see that the length of the code in case of 2 words  is equal to - 
2
1log  = 1 bits , 

also the length of the code in the in case of 4 words  is equal to - 
4
1log  = 2 bits, 

while  its equal to – log 1
8
 = 3 bits in the case of 8 words. Hence, the more the 

entropy of  the data , the more bits per pixel  are required to represent the symbols 
of that data. 

Source Coding    

The problem of representing the source alphabet symbols Si in term of another 
system of symbols (usually the binary system consisting of the two symbols 0 and 
1) is the main topic of coding. 

The two main problems of coding methods  are the following: 

1. Assigning codes that can be decoded unambiguously ( i.e. the coder must 
provide a one-to-one mapping ). 

2.  Assign codes with the minimum average size.. 

For  the purposes of efficiency. The average code length 

𝐿 =  �𝑃𝑖𝑙𝑖

n

i=1

 

is minimized, where   𝑙𝑖 is the length of the representation of the ith symbol  Si. 

the entropy function provides a lower bound on L ( L ≥ H(x)). 

Source Code Efficiency 

           L = average length of the code       

L =   ∑ 𝑃𝑖  𝑙𝑖 n
i=1  bits/symbol. 

  ξ𝑐𝑜𝑑𝑒 =  
𝐻(𝑥)
𝐿 ∗ 100%    𝑤ℎ𝑒𝑟𝑒 ξ𝑐𝑜𝑑𝑒 = code Ef�iciency 
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 H لان  ن الحالة المثالیةماي ((    H(x)ن ال م   Lأقتراب  بمقدار   ξ تقاس كفائتھ    sourceاي ان كل 
 .))للرمز     Ideally Lengthھو ال   I وان I  ھو معدل 

 . L   ≤  H(x)ولكن عملیا   Hتقترب من  Lان غایتنا ھي 

Redundancy of the  Code  

Consider the four symbols a1, a2, a3, and a4. If they appear in our data strings 
with equal probabilities (= 0.25), then the entropy of the data is :  

H = -4 (0.25Iog2 0.25) = 2 bit/symbol.  
Or directly , from  the theorem : 

H = log2 M = log2 4 = 2 bits/symbol ,  because H reach it's maximum value 
when the  symbols  have equal probabilities. 

Two is the smallest number of bits needed on the average to represent each 
symbol in this case. We can simply assign our symbols the four 2-bit codes 00, 01, 
10, and 11. Since the probabilities are equal, The average length of the code is:  
     L =  ⌈log2 M⌉ = ⌈log2 4⌉ = 2 . 
the redundancy is :  
     R = L – H = 2 – 2 = 0.   
Hence,  the data cannot be compressed below 2 bits/symbol.  

Next, consider the case where the four symbols occur with different 
probabilities as shown in Table 1 , where a1 appears in the data (on average) about 
half the time, a2 and a3 have equal probabilities, and a4 is rare. 
 
 
           Symbol     Prob.     Code1      
               a1           0.49       1             
               a2           0.25       01            
              a3            0.25       001          
              a4            0.01       000          
                          
              Table 1 : Variable-Size Codes. 
 
In this case, the data has entropy : 
     H  = - (0.49 log2 0.49 + 0.25 log2 0.25 + 0.25 log2 0.25 + 0.01 log2 0.01)  

= - ( - 0.05 - 0.5 - 0.5 - 0.066) = 1.57 bits/symbol.  
The smallest number of bits needed, on average, to represent each symbol has 
dropped to 1.57 ( i.e. the ideally length of the code is  H = 1.57 ). 

If we again assign our symbols the four 2-bit codes 00, 01, 10, and 11, the 
redundancy would be :  
      R  = L – H  
           = ⌈log2 4 ⌉ - 1.57  =  2 – 1.57 = 0.43 bits / symbol. 
That means ,  the data can be compressed below 2 bits/symbol.  
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 This suggests assigning variable size codes to the symbols. Code1 of Table 1 

is designed such that the most common symbol, a1, is assigned the shortest code. 
When long data strings are transmitted using Code1, the average size of the code  
(the number of bits per symbol) is  :  

L =  ∑ Pi  li n
i=1  

    = 1 × 0.49 + 2 × 0.25 + 3 × 0.25 + 3 × 0.01 = 1. 77 bits/symbol. 
Which is very close to the minimum. The redundancy in this case is  
     R =  L - H = 1.77 - 1.57 = 0.2 bits per symbol. 

 

Source Coding Techniques  

Variable length code 

یخصص لھ    symbolsحیث ان كل رمز   symbolsذه التقنیة تعنى بوجود الاحتمالیة للرموز ھ
code   مختلف في الطول عن باقي الsymbols   وذلك اعتمادا على أحتمالیة  ذلك الsymbols   حیث ان

لاحتمالیة ذا ا symbol  ذا طول قلیل وبالعكس فان ال   codeذا الاحتمالیة العالیة یعطي  symbolsال 
 . ذا طول كبیر  codeیعطي القلیلة 

𝐿 = �𝑃𝑖𝑙𝑖       (𝑏𝑖𝑡/𝑠𝑦𝑚𝑏𝑜𝑙) 
𝑀

𝑖=1

 

       However, variable length code bring with them a fundamental problem, at the 
receiving end, how do you recognize each symbol of the code? In, for example, a 
binary system how do you recognize the end of one code word and the beginning 
of the next ? 

If the probabilities of the frequencies of occurrence of the individual symbols 
are sufficiently different , then variable length encoding can be significantly more 
efficient than fixed –length encoding  

Pi  ↑             li  ↓ 

المخصص لذلك ال  codeیجب ان یقل طول ال   textفي ال   symbolاي كلما تزید عدد مرات تكرار ال 
symbol   والعكس صحیح 

عندما تكون   fixed length codeمن    بكثیر افضل  variable length codeیكون ال  ملاحظة 
 .مختلفة بصورة كبیرة   symbolاحتمالیات تكرار الرموز 
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Shannon – Fano method 

       To encode a message using Shannon-Fano method, you can follow the below 
steps : 

1. Sort the symbols in descending order according to their probabilities.  
2. Divide  the list of symbols into two parts : upper and lower, so that the 

summation of the probabilities of the upper part is equal as possible to the 
summation of the lower part symbols. 

3. Assign "0" code to each of the upper part symbols, and "1" code to each of 
the lower part symbols. 

4. Divide each of the upper and lower part into upper and lower subdivision as 
in step (2) above, and assign the code "0" and "1" as in  step (3) above. 

5. Continue in step(4) until each subdivision contains only one symbols. 

Note  

The Shannon-fano method is easy to implement, but the code is produces is 
generally not good as that produced by the Huffman method, described in the next 
section. 

Ex1  
 A source produce 5 independent symbols ( x1, x2, x3, x4, x5 ) with its 

corresponding probabilities 0.1, 0.3, 0.15, 0.25, 0.2 . design a binary code for the 
above source symbol using Shannon – fanon method . 
 
Sol 

symbols           Pi        code               li 
     x 2                    0.3          0   0                    2 
     x4                     0.25        0   1                    2 
     x5                     0.2          1   0                    2 
     x3                     0.15        1   1   0               3 
     x1                     0.1          1   1   1               3 
 
L = ∑ Pi li  = 2*0.3 + 2*0.25 + 2* 0.2 + 3* 0.15 + 3* 0.1 
    = 2.25 Bits\symbol 
  

The entropy (the smallest number of bits needed, on average, to represent each 
symbol) is 
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H = - ∑ Pi log Pi 
    = - ( 0.3 log 0.3 + 0.25 log 0.25 +0.2 log 0.2 + 0.15 log 0.15 +   0.1 log 

0.1 ) 
   = 2.228  Bits/symbol  
R = L – H = 2.25 - 2.228 = 0.022   

ξ code = H(x)
L

 * 100 % = 2.228
2.25

 * 100 %  = 99 % 

Note   
If we use fixed length coding  

 L = ⌈ log 2  5⌉ = ⌈ 2.3219⌉ = 3 
 R = L – H = 3 - 2.228 = 0.772    
 

ξ code = H(x)
L

 * 100 %  = 2.228
3

 * 100 %  = 74 % 

.: coding in Shannon –fanon is more efficient than coding in fixed length 
coding . 
 

Ex2 : 
A source produce 5 independent symbols ( x1, x2, x3, x4, x5 ) with its 

corresponding probabilities 0.1, 0.05, 0.25, 0.5, 0.1. design a binary code for the 
above source symbol using Shannon – fanon method . 

Sol 
symbols           Pi        code               li 
     x4                     0.5        0                        1 
     x3                     0.25      1   0                   2 
     x1                     0.1        1   1   0              3 
     x5                     0.1        1   1   1  0          4 
     x2                     0.05      1   1   1  1          4 
 
L = ∑ Pi li  = 1*0.5 + 2*0.25 + 3* 0.1 + 4* 0.1 + 4* 0.05 
   = 1.9 Bits / symbol 

The entropy (the smallest number of bits needed, on average, to represent each 
symbol) is 

 
H = - ∑ Pi log Pi 
    = - ( 0.5 log 0.5 + 0.25 log 0.25 +0.1 log 0.1 + 0.1 log 0.1 + 0.05    log 

0.05 ) 
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    = 1.88  Bits /symbol  
 
R = L – H = 1.9 – 1.88 = 0.02    

ξ code = H(x)
L

 * 100 % . 

           = 1.88
1.9

 * 100 %  = 99 % 
 
Ex3 : 

A source produce 5 independent symbols ( x1, x2, x3, x4, x5 ) with its 
corresponding probabilities 0.1, 0.35, 0.3, 0.05, 0.2. design a binary code for the 
above source symbol using Shannon – fanon method . 

 
Sol 

 
symbols           Pi        code               li 
     x2                     0.35      0                        1 
     x3                     0.3        1   0                   2 
     x5                     0.2        1   1   0              3 
     x1                     0.1        1   1   1  0          4 
     x4                     0.05      1   1   1  1          4 
                
L = ∑ Pi li  = 1*0.35 + 2*0.3 + 3* 0.2 + 4* 0.1 + 4* 0.05 
   = 2.15 Bit / symbol 

The entropy (the smallest number of bits needed, on average, to represent each 
symbol) is 

 
H = - ∑ Pi log Pi 
   = - ( 0.35 log 0.35 +0.3 log 0.3 +0.2 log 0.2 +0.1 log 0.1 + 0.05 log 0.05 ) 

    = 2.062  Bit/symbol 
 
R = L – H = 2.15 - 2.062 = 0.088    

ξ code  = H(x)
L

 * 100 % . 

= 2.062
2.15

 * 100 %  = 96 % 
Sol 2 

symbols           Pi        code               li 
     x2                     0.35      0   0                   2 
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     x3                     0.3        0   1                   2 
     x5                     0.2        1   0                   2 
     x1                     0.1        1   1   0              3 
     x4                     0.05      1   1   1              3 
                
L = ∑ Pi li  = 1*0.35 + 2*0.3 + 2* 0.2 + 3* 0.1 + 3* 0.05 
   = 2.15 Bit / symbol  

 
Ex4 : 

A source produce 7 independent symbols ( x1, x2, …. , x7 ) with its 
corresponding probabilities 0.10, 0.15, 0.10, 0.05, 0.25, 0.20, 015. design a binary 
code for the above source symbol using Shannon – fanon method . 

 
Sol 

Symbols            Prob.        Code         li 
     X5                 0.25          00             2 
     X6                 0.20          01             2 
     X2                 0.15          100           3 
     X7                 0.15          101            3 
     X1                 0.10          110            3 
     X3                 0.10          1110          4 
     X4                 0.05          1111          4 
 
The average size of this code  is   
 L = 0.25 × 2 + 0.20 × 2 + 0.15 × 3 + 0.15 × 3 + 0.10 ×3+ 0.10 × 4+0.05 × 4  
     = 2.7 bits/symbol.  
 
The entropy (the smallest number of bits needed, on average, to represent each 
symbol) is 
 H = -(0.2510g2 0.25 + 0.2010g2 0.20 + 0.1510g2 0.15 + 0.151og2 0.15 

+ 0.10 log2 0.10 + 0.10 log2 0.10 + 0.0510g2 0.05)  
=   2.67 bits/ symbols. 
 

R = L – H = 2.7 - 2.67 = 0.03    

ξ code  = H(x)
L

 * 100 % . 

= 2.67
2.7

 * 100 %  = 99 % 
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Huffman  Coding method  

Huffman  makes the average number of binary digits per message nearly equal 
the Entropy ( average bits of information per message ). To encode a message 
using Huffman method, a tree must has to be constructed , with symbol  at every 
leaf, from bottom to up. This is done by  following the below steps: 

1) Sort the symbols in descending order according to their probabilities . 
2) Assign "0" and "1" code for the two symbols with the smallest  

probabilities . 
3) Combine those two symbols in step (2) to construct a new symbol with 

probability equal to the summation of the two probabilities , then enter the 
new symbol in the list at a new position appropriate to its new probability . 

4) Repeat step ( 2 and 3 ) until the list has only one symbol. 
5) The code word of any symbol  may be obtained by following the series of 

binary codes ( 0s, 1s ) which has been assigned to that symbol. 

Note 

It can be shown that the size of the Huffman code of a symbol ai with 
probability Pi is always less than or equal to  ⌈ -log Pi ⌉ ( the ideally length of the 
code) . 

Ex1  

Design a binary code for the below source symbol using Huffman method. 

Xi             Pi                                               code        li 
x 1                0.3     0                              0.55   0          00             2 

          x2                         0.25   1                               0.45   1           01            2 
x3                0.2                                                          11            2 
x4                0.15  0           0.25    0                              100           3 
x5                0.1     1          0.2       1                             101          3 
 
 
L=∑ li pi = 2.25  bits\symbol 

 Shannon –fanoبطریقة ال   codeما عملنا  ذاھنا ھي نفس الكفاءه ا  sourceكفائة ال 

Ex2  
Design a binary code for the below source using Huffman method . 
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Xi           Pi                                                                                   code 
x 1         0.5                                                                  0.5      0

                0 

          x2         0.25                            0.25    0      0.5  1                 10 
x3          0.1                              0.25   1                        111 
x4          0.1      0                0.15   0                                       1100 
x5          0.05   1           0.1    1                                      1101 
 

L=∑ li pi= 2.25  

=1.9 bits\symbol 
 دائما یكون  ملاحظة 

Lhuff  ≤  Lshann 
 ھي   Lوان ھناك حدود لل 

H(x)≤ L ≤ H(x)+1 
 

حیث قد یكون   fixed lengthولاتنطبق على   variable lengthھذه الحدود تنطبق على ال 
 بكثیر ۱اكبر من   fixed lengthالفرق في ال 

Ex3  

Design a binary code for the below source symbol using Huffman method  

Code    xi            p(xi) 

1         x1      0.4                                                                           0.6   0 

000     x2    0.2                                           0.24          0.36  0       0.4   1 

010     x3   0.12                              0.16      0.2   0           0.24   1 

0010  x4    0.08               0.12        0.12 0    0.16     1 

0011  x5    0.08            0.08 
0        0.12   1 

0110  x6   0.08     0       0.08  1 

0111  x7   0.04      1 

 

L=∑ Pi li    = 2.48 bits/symbol  
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H(x)=2.419 bits/symbol 

ƺcode =2.419
2.45

 * 100 % = 97.54 % 

For Shannon –fanon  

L= 2.52 bit/symbol  

ƺcode =2.419
2.52

 * 100 % = 95.99 %  

 

Ex4 

A source produce 7 independent symbols ( x1, x2, x3, x4, x5, x6, x7 ) with its 
corresponding probabilities 0.23, 0.17, 0.20 , 0.15, 0.08, 0.05, 0.12  design a 
binary code for the above source symbol using Huffman  method.  

Sol 

Symbols     prob.    Code 

      X1              0.23       10 
      X3              0.20       11 
      X2                       0.17        000  
      X4              0.15        001   
      X6              0.12        011  
      X5              0.08        0100  
      X4              0.05        0101 

 

Extension of code 

when we extend  a source with order of n , we have the following equation for L 
and H  

L= 
Ln
n

 

H(x) = 
Hn(x)
n

      where n is the order of extension  
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We also have the important relation for coding a source , 

H(x)≤ L ≤ H(x)+1 

Now , if we take the nth extension of the code the above relation is also applied , so 

Hn(x) ≤ Ln ≤ Hn(x)+1 

Where Ln is the average code length ,for the extended source  

Since Ln = n L 

And Hn(x) = nH(x) 

Then 

nH(x) ≤ nL ≤ n H(x) + 1 

 نحصل على القانون العام   nبالقسم على 

                       H(x)≤ L ≤ H(x) + 1
𝑛
 

یكون ) اكبر   orderب  extensionاي كلما عملنا ( source outputعادلة اعلاه تبین انھ كلما وسعنا ال لما
 وھذه یؤدي الى  Hستقترب من   Lافضل لانة 

                   ξ code              100% 

Ex 

A binary source produce two symbols x1 ,x2 with probabilities p(x1) = 0.8 , p(x2) 
=0.2 . find   ξ   for the 1st , 2nd  , 3rd  extension  of binary code for the above source . 

Sol 

(1)       n=1 , coding with extension  

Xi           Pi            code        li 
x 1             0.8                  0             1 
x2              0.2                  1             1 
 
L=1    Bits /symbol  
H(x) = - ∑ Pi log Pi 
      = -( 0.8 log 0.8 + 0.2 log 0.2 ) 
      =0.72   Bits/symbol   
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ξ code  = 
H(x)
𝐿

 * 100% =0.72
1

 * 100% = 72 % 

 
 

(2)     n=2 , coding with extension of order 2 
 
Symbol         Pi_                                                                                     code       li 
x1x1              0.64                                   0.64    0          0          1 
x1x2              0.16                 0.2       0      0.36    1         11        2 
x2x1              0.16   0             0.16     1                          100       3 
x2x2              0.04   1                                                    101       3 

 

L2= ∑ li Pi 
   = 1*0.64 + 2*0.16 + 3* 0.16 + 3* 0.04 = 1.56 bits\symbol 
L = L2

2
 = 1.56

2
 = 0.78 bits / symbol  

H2 (x) = -(0.64 log 0.64 + 2*0.16 log 0.16 + 0.04 log 0.04) 
        = 1.44 
H(x) = H2(x)

2
 = 1.44

2
 = 0.72 bits/symbol  

ξ code  = H(x)
L

 * 100% = 0.72
0.78

 * 100 % = 94 %  
 
 

 1واحد ھو   bitیرمزان ب x1x1  ھو انھ اصبح لدینا رمزان ھما  Lلاحظ ان سبب نقصان ملاحظة 
 0.64  وان احتمالیة ورودھا كبیرة وھي

 
 

(3)      n= 3 ,coding with extension of order 3 
 
Symbol         Prob.            code                          li 

x1x1x1                0.512              0                               1 
x1x1x2          0.128              1   0    0                    3 
x1x2x1               0.128              1   0    1                     3 
x2x1x1         0.128              1   1    0                     3 
x1x2x2              0.032              1   1    1    0    0         5 
x2x1x2             0.032              1   1    1    0    1         5 
x2x2x1              0.032              1   1    1    1    0         5 
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x2x2x2              0.008              1   1    1    1    1         5 
 

ولكن تم استخدام  Huffmanبأستخدام طریقة    codingمن الأكفاء  اجراء عملیة ال : ملاحظة
 .للسھولة  Shannon – fanoطریقة 

L3= ∑ Pi li    =2.184  
L = L3

3
 = 2.184

3
 = 0.728 bits / symbol 

H3 (x) = -∑ Pi log Pi = 2.16 
H(x) = H3(x)

3
 = 2.16

3
 = 0.72 bits/symbol  

 

ξ code = H(x)
L

 * 100% = 0.72
0.728

 * 100 % = 98.9 %  

 
وزادت الى  ۲بمقدار  extensionعندما عملنا % ۹٤الى % ۷۲لاحظ ان الكفاءة زادت من 

 .۳بمقدار   extensionعندما عملنا % ۹۸٫۹
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Prefix Code 
prefix property:  This property requires that once a certain bit pattern has been 

assigned as the code of a symbol, no other codes should start with that pattern (the 
pattern cannot be the prefix of any other code).  

Hence, a prefix code is a variable-size code that satisfies the prefix property.  
 
  As we Know earlier, designing variable-size codes is done by following two 

principles:  
(1) Assign short codes to the more frequent symbols and ,   
(2) obey the prefix property. 

Following these principles produces short, unambiguous codes, but not necessarily 
the best (i.e.  shortest) ones. 

  
 
Binary Representation of the Integers 

The binary representation of the integers has two main disadvantages : 
1. does not satisfy the prefix property.  
2. In this representation the size n of the set of integers has to be known in 

advance, since it determines the code size, which is 1 + ⌊ log2 n ⌋.  
 
For example the size of the code of the integer is  
Code size   ( 3 ) = 1 + ⌊ log2 3 ⌋ = 1 + ⌊ 1.585 ⌋ = 1+1 = 2 
Code size   ( 5 ) = 1 + ⌊ log2 5 ⌋ = 1 + ⌊ 2.322 ⌋ = 1+2 = 3 
Code size   ( 8 ) = 1 + ⌊ log2 8 ⌋ = 1 + ⌊ 3 ⌋ = 1+3 = 4 
Code size   ( 19 ) = 1 + ⌊ log2 19 ⌋ = 1 + ⌊ 4.24⌋ = 1+4 = 5 its code is 10011 
Code size   ( 37 ) = 1 + ⌊ log2 37 ⌋ = 1 + ⌊ 5.2⌋ = 1+5 = 6 its code is 100101 
 
Integer         binary                    Code 
                  representation          length 
    0                     0                          1 
    1                     1                          1 
    2                     10                        2      
    3                     11                        2 
    4                     100                      3    
    5                     101                      3 
    6                     110                      3 
    7                     111                      3 
    8                     1000                    4 
    9                     1001                    4 
 
Table (1) : The Binary Representation of the Integers  
 

2 
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Note : the ambiguity will happen between 1 and all the other numbers ( except 
0 ). 
 
Ex: 
Encoding this string  5,3,1,6 with the codes of table 1  yields : 

101111110 
Logically specking, the decoder does not know the size n of the set of integers 

( which has to be known in advance e.g. ASCII code   ) , hence The decoder does 
not know whether to decode the string as 1|0|1|1|1|1|1|1|0  , which is 
1,0,1,1,1,1,1,1,0   ; or as 10|11|11|11|0 , which is 2,3,3,3,0 ; or as 101|111|110 , 
which is.. 5,7,6  and so on. Code of table 1 is thus ambiguous.The decoder has to 
follow a constructed Binary tree ).  

 
In some applications, a prefix code is required to code a set of integers whose 

size is not known in advance. Several such codes, most of which are presented 
later. 

 
The Unary Code 
 

The unary code of the nonnegative integer n is defined as n - 1 ones followed 
by a single 0 (Table 2). The length of the unary code for the integer n is thus n bits. 

 
Integer         unary Code                 Code 
                                                        length 
    1                     0                              1 
    2                     10                            2 
    3                     110                          3      
    4                     1110                        4 
    5                     11110                      5    
    6                     111110                    6 
    7                     1111110                  7 
    8                     11111110                8 
    9                     111111110              9 
     
Table (2) : The Unary Code 
 

Ex: 
Assume that a number of integers are encoded   into 1101111110010   using 

the unary code,  decode this codeword. 
Sol  

  The decoder starts at the root, reads the first bit "1", since this bit is not "0", 
the decoder precede foreword, the second bit "1" , also the decoder precede 
foreword, since the third bit is "0" ,it  make the decode stop,  and  emits the integer 

3 
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"3" which is the number of bits it has been read. It again returns to the root, reads 
the first bit "1", and so on until it read a bit  "0", and  emits the integer "7" which is 
the number of bits it has been read. It again returns to the root, reads the first bit 
"0", which force the decoder to stop and emit the integer "1", which is the number 
of bits it has been read. It again returns to the root, reads "1" , moves foreword , 
read "0" which force the decoder to stop and emit the integer "2", which is the 
number of integer it has been read. 

 
Note 

Its obvious that the unary code produces, unambiguous codes, but it's not 
necessarily the best  ones (i.e.  very long code). 
 
Other Prefix Codes 
 

Four more prefix codes are described in this section. We use B(n) to denote the 
binary representation of integer n. Thus |B(n)| is the length, in bits, of this 
representation. We also use B'(n) to denote B(n) without its most significant bit 
(which is always 1).  

Code C1 is made of two parts. To code the positive integer n we first generate 
the unary code of |B(n)| (the size of the binary representation of n), then append  
B'(n) to it. An example is n = 16 = 100002. The size of B(16) is 5, so we start with  
the unary code 11110 and append B'(16) = 0000. The complete code is thus 
11110|0000. Another example is n = 5 = 1012   , The size of B(5) is 3, so we start 
with  the unary code 110 and append B'(5) = 01 the complete code is 110|01.the 
length of  C1(n) is  2 ⌊log2 n ⌋ + 1 bits.  

Code C2 is a rearrangement of C1 where each of the 1 +  ⌊log2 n ⌋ bits of the  
first part (the unary code) of C1 is followed by one of the bits of the second part. 
Thus code C2 (16) = 101010100 and C2 (5) = 10110. 

Code C3 starts with |B(n)| coded in C2 , followed by B'(n). Thus 16 is coded as 
C2 (5) = 10110 followed by B'(16) = 0000. The complete  C3 (16) code is thus 
10110|0000 

Code C4 consists of several parts. We start with B(n). To the left of this we 
write the binary representation of |B(n)| - 1 (the length of n, minus 1). This 
continues recursively, until a 2-bit length  number is written. A zero is then 
added to the right of the entire number, to make it decodable. To encode 16, we 
start with 10000, add  | B(16) | -1 = 4 = 1002 to the left, then | B(4) | - 1 = 2 = 102 to 
the left of that and finally, a zero on the right. The result is 10|100|10000|0. To 
encode 5, we start with 101, add |B(5)| - 1 = 2 = 102 to the left, and a zero on the 
right. The result  is 10|101|0. 

 
 
 
 

4 
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Generating the Four  prefix codes can be summarized in the below steps : 
B(n)  :  is  the binary representation of integer n.  
B'(n) :  denote B(n) without its most significant bit (which is always 1). 
|B(n)| :  is the length, in bits, of B(n). 
 
1. C1(n) = U( |B(n)|  ) | B'(n). 
2. C2(n) = rearrangement ( alternative representation ) of C1. 
3. C3(n) = C2( |B(n)|  ) | B'(n). 
4. C4(n) = [ |B(n)|  - 1 ] | B(n) | 0.  Where [ ] denote the Binary representation. 
 

Ex1: 
Find the four other   prefix codes for n = 13. 
B(13)  :  1101. 
B'(13) :  101. 
|B(13)| :  4. 
 
1. C1(n) = U( |B(n)|  ) | B'(n). 
      C1(13) = U (4) | B'(13). 
                   = 1110|101. 
 
2.  C2(13) = 1110110. 

 
3. C3(n) = C2( |B(n)|  ) | B'(n). 

 C3(13) = C2( 4 ) | B'(13). 
 

    B(4)  :  100. 
    B'(4) :  00. 
   |B(4)| :  3. 

 
C1(4) = U(3) | B'(4). 
            = 110| 00. 
C2(4) = 10100. 

          C3(13) = 10100|101. 
 

4. C4(n) = [ |B(n)|  - 1 ] | B(n) | 0. 
     C4(13) = [ |B(13)|  - 1 ] | B(13) | 0. 
                  =  [ 4  - 1 ] | 1101 | 0. 
                  =  11|1101|0. 
 
   Step 4 is  continues recursively, until a 2-bit length  number is written. 
 

5 
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Ex2: 
Find the four other   prefix codes for n = 9. 
B(9)  :  1001. 
B'(9) :  001. 
|B(9)| :  4. 
 
1. C1(n) = U( |B(n)|  ) | B'(n). 
      C1(9) = U (4) | B'(9). 
                 = 1110|001. 
 
2.  C2(9) = 1010110. 

 
3. C3(n) = C2( |B(n)|  ) | B'(n). 

 C3(9) = C2( 4 ) | B'(9). 
  
 C2(4) = 10100.        From Ex1. 

            C3(9) = 10100|001.  
 

4. C4(n) = [ |B(n)|  - 1 ] | B(n) | 0. 
     C4(9) = [ |B(9)|  - 1 ] | B(9) | 0. 
                  =  [ 4  - 1 ] | 1001 | 0. 
                  =  11|1001|0. 
 

General Prefix Code 
 

More prefix codes for the positive integers, appropriate for special 
applications, may be designed by the following general approach. Select positive 
integers Vi and combine them in a list V (which may be finite or infinite according 
to needs).       

V = [ V1    V2    V3…   2i-1 ....Vk] 
The code of the positive integer n is prepared in the three following steps: 
1. Find k such that 
 
              � 𝑉𝑖 < 𝑛 ≤  ∑ 𝑉𝑖 𝑘 

𝑖=1  𝑘−1
𝑖=1  

 
2. Compute the difference 

 
                   𝑑 = n −  ∑ 𝑉𝑖 − 1𝑘−1

𝑖=1  
.  
dmax  can be written in  ⌈ log2 Vk ⌉ bits. Hence, The number d is encoded, using 

the standard binary code, with ⌈ log2 Vk ⌉  number of bits.  

6 
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3. Encode n in two parts. Start with k encoded in some prefix code ( here we 

use unary code for simplicity ) , and concatenate  the binary code of d.  
      Code = U(k)|dB 
 

Ex1 
Encode the integer  n = 10 , using the general prefix code. 

   
The infinite sequence   V = [ 1   2   4   8   ... ].  

                                                                 10 
1. The integer n = 10 satisfies 
  � 𝑉𝑖 < 10 ≤  ∑ 𝑉𝑖 4 

𝑖=1  3
𝑖=1 = 7 < 10 ≤ 15. 

 
           Hence,   k = 4.  
 

2.  𝑑 = 10 −  ∑ 𝑉𝑖 − 13
𝑖=1 = 10 − 7 − 1 =  2 . 

   
3. k = 4 encoded in unary ( unary code is 1110), and d must be written in           
⌈ log2Vk ⌉ = ⌈ log2 8 ⌉  = 3 bits. 

   
        The general code of 10 is : 

Code = U(k)|dB 
          = U(4)|2B        2 must be represent in 3 bits. 

                             =  1110|010 
 
Ex2 

Encode the integer  n = 19 , using the general prefix code. 
   

The infinite sequence   V = [ 1   2   4   8    16 ... ].  
                                                                        19 
1. The integer n = 19 satisfies 

  � 𝑉𝑖 < 19 ≤  ∑ 𝑉𝑖 5 
𝑖=1  4

𝑖=1 = 15 < 19 ≤ 31. 
 
           Hence,   k = 5.  
 

2.  𝑑 = 19 −  ∑ 𝑉𝑖 − 14
𝑖=1 = 19 − 15 − 1 =  3 . 

   
3. k = 5 encoded in unary ( unary code is 11110), and d must be written in           
⌈ log2Vk ⌉ = ⌈ log2 16 ⌉  = 4 bits. 

   
        The general code of 19 is : 

Code = U(k)|dB 

7 
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          = U(5)|3B               3 must be represented in 4 bits 
                             =  11110|0011   
 
 The Golomb Code 
The Golomb code for nonnegative integers  n ,  can be an effective Huffman code. 
The code depends on the choice of a parameter  b. The first step is to compute the 
two quantities : 
         q=⌊ 𝑛−1

𝑏
 ⌋      ,          r = n - qb-1, 

(where the notation ⌊ x ⌋ implies truncation of x). 
The  Golomb code is  constructed of two parts; the first is the value of  q + 1, 

coded in unary, followed by  r  represented in binary depending on the selected 
base. 
 
        Golomb ( n ) = U ( q + 1 ) | r  
  
Choosing b = 3, e.g., produces three possible remainders, 0, 1, and 2. They are 
coded 0, 10, and 11, respectively. Choosing b = 5 produces the five remainders 0 
through 4, which are coded 00, 01, 100, 101, and 110. Table 2  shows  ( r )  code of 
the Golomb code for b = 3 and b = 5. 
 

  r  0  1  2  3  4 
b = 3 0 10 11   
b = 5 00 01 100 101 110 

 
 
Table 2 :  r code  in  Golomb Codes for b = 3 and b = 5. 
 
Ex1 

Encode the integer  n = 8 , using the Golomb code choosing b = 3. 
 

q=⌊ 𝑛−1
𝑏

 ⌋     

q=⌊ 8−1
3

 ⌋   =⌊ 7
3
 ⌋  = 2    

  
r = n - qb-1, 
  = 8 – 2 * 3 – 1 = 1 
 
  Golomb ( n ) = U ( q + 1 ) | r 
  Golomb ( 8 ) = U ( 3 ) | 1             we obtain  r   from table 2 
                        = 110 | 10 
Ex2 

Encode the integer  n = 7 , using the Golomb code choosing b = 5. 
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q=⌊ 𝑛−1

𝑏
 ⌋     

q=⌊ 7−1
5

 ⌋   =⌊ 6
5
 ⌋  = 1    

  
r = n - qb-1, 
  = 7 – 5 * 1 – 1 = 1 
 
  Golomb ( n ) = U ( q + 1 ) | r 
  Golomb ( 7 ) = U ( 2 ) | 1             we obtain  r   from table  2 
                        = 10 | 01 
 
A Variant of Huffman coding 
 

The Huffman method assumes that the frequencies of occurrence of all the 
symbols of the alphabet are known to the compressor. In practice, the frequencies 
are seldom, if ever, known in advance. One approach to this problem is for the 
compressor to read the original data twice. The first time, it just calculates the 
frequencies. The second time, it compresses the data. Between the two passes, the 
compressor constructs the Huffman tree. Such a method is called semiadaptive and 
is normally too slow to be practical. The method that is used in practice is called 
adaptive (or dynamic) Huffman coding. This method is the basis of the UNIX 
compact program.  

This variant of the adaptive Huffman method is simpler but less efficient. The 
idea is to calculate a set of n variable-size codes based on equal probabilities, to 
assign those codes to the n symbols at random, and to change the assignments "on 
the   fly," as symbols are being read and compressed. The method is not efficient 
since the codes are not based on the actual probabilities of the symbols in the 
input stream. However, it is simpler to implement and also faster than the adaptive 
method described above, because it has to swap rows in a table, rather than update 
a tree, when updating the frequencies of the symbols. 

The main data structure is an n × 3 table where the three columns store the 
names of the n symbols, their frequencies of occurrence so far, and their codes. 
The  table is always kept sorted by the second column. When the frequency counts 
in the second column change, rows are swapped, but only columns 1 and 2 are 
moved.The codes in column 3 never change.  

Figure 1 shows an example of four symbols and the behavior of the method 
when the string "a2, a4, a4" is compressed. 

Figure 1 a  shows the initial state. After the first symbol a2 is read, its count is  
incremented, and since it is now the largest count, rows 1 and 2 are  swapped 
(Figure 1 b). After the second symbol a4 is read, its count is incremented and rows 
2 and 4 are swapped (Figure 1c). Finally, after reading the last symbol a4,its count 
is the largest, so rows 1 and 2 are swapped (Figure 1d). 
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Name  Count    Code    Name   Count    Code    Name   Count   Code    Name   Count    Code    
 a1        0        0 
 a2        0        10 
 a3        0        110 
 a4        0        111 

 a2        1        0 
 a1        0        10 
 a3        0        110 
 a4        0        111 

 a2        1        0 
 a4        1        10 
 a1        0        110 
 a3        0        111 

 a4        2        0 
 a2        1        10 
 a1        0        110 
 a3        0        111 

          ( a )                            ( b )                            ( c )                           ( d ) 
                       Figure 1 : Four Steps in a Huffman Variant coding. 

 Hence, the input   string is  a2a4a4                  output is  0|10|0 
 

Ex 
Design a binary code for the   source symbol   shown in figure 2 using the 

variant  of Huffman method, assume that the input stream is  a3a5a4a4a3a2a3. 

Name  Count    Code    Name   Count    Code    Name   Count   Code    Name   Count    Code    
 a1        0        0 
 a2        0        10 
 a3        0        110 
 a4        0        1110 
 a5        0        1111 

 a3       1        0 
 a1       0        10 
 a2       0        110 
 a4       0        1110 
 a5       0        1111 

 a3        1        0 
 a5        1        10 
 a1        0        110 
 a2        0        1110 
 a4        0        1111 

 a3        1        0 
 a5        1        10 
 a4        1        110 
 a1        0        1110 
a2         0        1111 

          ( a )                            ( b )                            ( c )                           ( d ) 
                        
Name  Count    Code    Name   Count    Code    Name   Count   Code    Name   Count    Code    
 a4        2        0 
 a3        1        10 
 a5        1        110 
 a1        0        1110 
 a2        0        1111 

 a4       2        0 
 a3       2        10 
 a5       1        110 
 a1       0        1110 
 a2       0        1111 

 a4        2        0 
 a3        2        10 
 a5        1        110 
 a2        1        1110 
 a1        0        1111 

 a3        3        0 
 a4        2        10 
 a5        1        110 
 a2        1        1110 
a1         0        1111 

           ( e )                           ( f )                             ( g )                           ( h ) 
 
                   Figure 2 : eight Steps in a Huffman Variant coding. 

 
input string is  a3a5a4a4a3a2a3                0|10|110|0|10|1110|0    
 
   
The only point that can cause a problem with this method is overflow of the 

count fields. If such a field is k bits wide, its maximum value is 2k - 1, so it will 
overflow when incremented for the 2k th time. This may happen if the size of the 
input stream is not known in advance, which is very common. Fortunately, we do 
not really need to know the counts, we just need them in sorted order, making it 
easy to solve this problem. 
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One solution is to count the input symbols and, after 2k - 1 symbols are input 
and compressed, to ( integer ) divide all the count fields by 2 (or shift them one 
position to the right, if this is easier). 

Another, similar, solution is to check each count field every time it is 
incremented and, if it has reached its maximum value ( if it consists of all ones ), 
to ( integer ) divide all the count fields by 2 as above. This approach requires fewer 
divisions but more complex tests. 

Whatever solution is adopted should be used by both the compressor and 
decompressor. 

 
MNP5 

Microcom, Inc., a maker of modems, has developed a protocol (called MNP, 
for Microcom Networking Protocol) for use in its modems. Among other things, 
the MNP protocol specifies how to unpack bytes into individual bits before they 
are sent by the modem. These methods (especially MNP5) have become very 
popular and are currently used by most modern modems. 

The MNP5 method  is commonly used for data  compression by modems. 
MNP5 method is a two-stage process that starts with run-length encoding, 
followed by adaptive frequency encoding. 

First Stage : Run-length encoding , which  has been described in RLE Text 
Compression, and  it has been  solved in MNP5 in different manner. When three or 
more identical consecutive bytes are found in the source stream, the compressor 
emits three copies of the byte onto its output stream, followed by a repetition 
count. When the decompressor reads three identical consecutive bytes, it knows 
that the next byte is a repetition count (which may be zero, indicating just three 
repetitions). A disadvantage of the method is that a run of three characters in the 
input stream results in four characters written to the output stream (expansion).A 
run of four characters results in no compression. Only runs longer than four 
characters do actually get compressed. Another, slight, problem is that the 
maximum count is artificially limited to 255. 
Ex1 

Use the first stage of MNP5 to compress the string  
          aaabccccddeeeeef 
Sol :   aaa3bccc4ddeee5f  
  Or    aaa0bccc1ddeee2f 
   Where 0 means 3 , 1 means 4 and 2 means 5  in order to maximize the limit 

of the count by 3. 
 

Calculating Compression Factor for MNP5 stage 1  
As we state in RLE text  compression that the compression factor (CF) is : 
 
Compression Factor = N

N − M(L − 3)
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For calculating the CF for  MNP5,  just substitute 4 for 3.  
Ex2 

Calculate the  CF  for MNP5 stage1 ( Run  Length encoding ) in  which            
N = 1000, M = 50, L = 10.  

For MNP5 the  compression  factor   = N
N − M(L − 4)

   

CF =  1000/[1000 - 50(10 - 4)] = 1.428. 

You can see that RLE text compression gives better result than RLE MNP5 
compression because CF is 1.538 in RLE text compression while CF is  1.428 in 
MNP5. 

Ex3  

      for the following message   "ffcccccfaaaaaafbbbbbbbbbbbbbf"  calculate the 
CF for stage1 of MNP5 method. 

 The compressed message will be ffccc5faaa6fbbb13f  

  Or  ffccc2faaa3fbbb10f  in order to maximize the limit of the count by 3. 
    

Note that the count 13 is encoded as ASCII code with only  1 byte length.   

       M = 3 

     L = 5+6+13 
3

 = 8 

compression  factor   = N
N – M(L− 4)

  = 29
29 – 3(8− 4)

   

CF   = 29
20 – 3

  = 29
17

 =  1.7  

Where 17 represent the uncompressed file length. 

Second Stage : Adaptive Frequency Encoding , which  operates on the bytes in 
the partially compressed stream generated by the first stage. Stage 2 is similar to 
the method of Variant of Huffman Code. It starts with a table of 256×2 entries, 
where each entry corresponds to one of the 256 possible 8-bit bytes ( ASCII ) from 
00000000 to 11111111. The first column, the frequency counts, is initialized to all 
zeros. Column 2 is initialized to variable-size codes, called tokens, that vary from 
a short "000|0" to a long "111|11111110". Column 2 with the tokens is shown in 
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Table 2 (which shows column 1 with frequencies  of  zero). Each token starts with 
a 3-bit header, followed by some code bits. 

The code bits (with three exceptions) are the two 1-bit codes 0 and 1, the four 
2-bit codes 0 through 3, the eight 3-bit codes 0 through 7, the sixteen 4-bit codes, 
the thirty-two 5-bit codes, the sixty-four 6-bit codes, and the one hundred and 
twenty seven 7-bit codes. This provides for a total of 2 + 4 + 8 + 16 + 32 + 64 + 
127 = 253 codes. The three exceptions are the first two codes "000|0" and "000|1", 
and the last code, which is "111|11111110" instead of the expected "111|1111111". 

When stage 2 starts, all 256 entries of column 1 are assigned frequency counts 
of zero. When the next byte  ( e.g. B ) is read from the input stream (actually, it is 
read from the output of the first stage), the corresponding token is written to the 
output stream, and the frequency of entry B is incremented by 1. Following this, 
ASCII code  may be swapped to ensure that table entries with large frequencies 
always have the shortest tokens. Notice that only the ASCII code with its 
corresponding frequency  are swapped, not the token. Thus the first entry always 
corresponds to token 000|0 and contains its frequency count. The ASCII code  of 
this entry , however, may change from the original "00000000" to another ASCII 
code if other ASCII code achieve higher frequency counts. 

 
 Byte     Freq.     Token 
ASCII       

Byte     Freq.       Token 
ASCII 

  Byte     Freq.       Token 
ASCII                             

 0             0          000|0 
 1             0          000|1 
 2             0          001|0 
 3             0          001|1 
 4             0          010|00 
 5             0          010|01 
 6             0          010|10 
 7             0          010|11 
 8             0          011|000 
 9             0          011|001 
 10           0          011|010 
 11           0          011|011 
 12           0          011|100 
 13           0          011|101 
 14           0          011|110 
 15           0          011|111 
 

 16           0          100|0000 
 17           0          100|0001 
 18           0          100|0010 
 19           0          100|0011 
 20           0          100|0100 
 21           0          100|0101 
 22           0          100|1110 
 23           0          100|1111 
 24           0          100|1000 
 25           0          100|1001 
 26           0          100|1010 
 27           0          100|1011 
 28           0          100|1100 
 29           0          100|1101 
 30           0          100|1110 
 31           0          100|1111 
 

  32         0     101|00000 
  33         0     101|00001 
  34         0     101|00010 
   : 
  62         0     101|11110 
  63         0     101|11110 
  64         0     110|000000 
  65         0     110|000001 
  66         0     110|000010  
   : 
 250        0     111|1111010 
 251        0     111|1111011 
 252        0     111|1111100 
 253        0     111|1111101 
 254        0     111|1111110 
 255        0     111|11111110  
 

 
                                       Table 3. the MNP5 tokens 
 

13 
 



Data Compression                                                                                                                                      Prefix Code 

The frequency counts are stored in 8-bit fields. Each time a count is incremented, 
the algorithm checks to see whether it has reached its maximum value. If yes, all 
the counts are scaled down by (integer) dividing them by 2.  

Another, subtle, point has to do with interaction between the two compression 
stages. Recall that each repetition of three or more characters is replaced, in stage 
1, by three repetitions, followed by a byte with the repetition count. When these 
four bytes arrive at stage 2, they all replaced by tokens, but the fourth one does 
not  cause an increment to the frequency of that count. 
Example: Suppose that the character with ASCII code 52 repeats six times. Stage 
1 will generate the four bytes "52, 52, 52, 3," and stage 2 will replace each with a 
token, will increment the entry for "52" (entry 53 in the table) by 3, but will not 
increment the entry for "3" (which is entry 4 in the table). (The three tokens for 
the three bytes of "52" may all be different, since tokens may be swapped after 
each "52" is read and processed.)  

The efficiency of MNP5 is a result of both stages. The efficiency of stage 1 
depends heavily on the original data. Stage 2 also depends on the original data, but 
to a smaller extent. Stage 2 tends to identify the most frequent characters in the 
data and assign them the short codes. A look at Table 2 shows that 32 of the 256 
characters have tokens that are 7 bits or fewer in length, thus resulting in 
compression. The other 224 characters have tokens that are 8 bits or longer. When 
one of these characters is replaced by a long token, the result is no compression, or 
even expansion. 

The efficiency of MNP5 thus depends on how many characters dominate the 
original data. If all characters occur at the same frequency, expansion will result. 
In the other extreme case, if only four characters appear in the data, each will be 
assigned a 4-bit token, and the compression factor will be 2. Explain?? 

 
o Exercise: Assuming that all 256 characters appear in the original data with 
the same probability (1/256 each), what will the expansion factor in stage 2 be? 
Sol 
 
Compression Factor = 𝑈𝑛𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑓𝑖𝑙𝑒 𝑠𝑖𝑧𝑒

𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑓𝑖𝑙𝑒 𝑠𝑖𝑧𝑒 
 

 
CF = 256∗8

4∗4+4∗5+8∗6+16∗7+32∗8+64∗9+127∗10+1∗11
=  2048

16+20+48+112+256+576+1270+11
 

          
       =2048

2309
= 𝟎.𝟖𝟖𝟕  which mean expansion. 

 
Updating the Table 
The process of updating the table of MNP5 codes by swapping rows can be done in 
two ways: 
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1. Sorting the entire table every time a frequency is incremented. This is simple in 
concept but too slow in practice, because the table is 256 entries long. 

2. Using pointers in the table, and swapping pointers such that items with large 
frequencies will point to short codes. 
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Dictionary methods 

Dictionary-based compression  methods does not use a statistical   

model,  nor do they use  variable-size code. Instead they select string of 

symbols and encode each string as a token (index), using a dictionary. The  

dictionary holds string of symbols and it  may be static or dynamic ( 

adaptive ). The former is   permanent , some  times allowing the additional 

of string but not deletion, where as the later hold string previously found in 

the input stream, allowing for addition and deletion of string as a new input 

is being read. 

 

Static dictionary  

 The simplest example of  a static dictionary is the dictionary of English 

language used to compress English text. A word is read from the input 

stream and the dictionary is searched. If a match is found, an index to the 

dictionary is written into the output stream, otherwise, the  uncompressed 

word itself is written. 

As a result, the output stream contains index and row words and we need 

to distinguish between them, and to do that we must use an extra bit  in 

every item written. In practice, a 19-bit index is sufficient to specify an item 

in a 219 = 524288 word dictionary. Thus when a match is found, we can 

write  20-bit token consisting of a flag bit ( perhaps is 0 ) followed by 19-bit 

index. When no match is found, a flag of "1" is written, followed by the size 

of the un match word, followed  by the word itself.  
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Example  

Assuming that the word "bet"  is found in dictionary entry 1025, it is 
encoded as 20-bit number 0|0000000010000000001. 

 Assuming that the word "xet" is not found, it is encoded  
1|0000011|01111000|01100101|01110100. This is a 4-byte number where 
the 7-bit field   0000011  indicate that three more byte follow,  while the 
three other bytes represent the ASCII code for the  small letters  x , e , t 
respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Argument 
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Argument 

Assuming that the size is written as a 7-bit number, and that an average 
word size is five characters, an uncompressed word occupies, on average, 6 
bytes (= 48 bits) in the output stream. Compressing 48 bits into 20 is 
excellent, provided that it happens often enough. Thus, we have to answer 
the question; How many matches are needed in order to have overall 
compression? We denote the probability of a match (the case where the 
word is found in the dictionary) by P. After reading and compressing N 
words, the size of the output stream will be N[20P + 48(1 - P)] = N[48 - 
28P] bits. The size of the input stream is (assuming five characters per 
word) 40N bits. Compression is achieved when N[48 - 28P] < 40N, which 
implies P > 0.29. We need a matching rate of 29% or better to achieve 
compression. 

Exercise: What compression factor do we get with P = 0.9?   

As long as the input stream consist of English text, most words will be 
found in the dictionary. Other type of data, however, may not found. A file 
containing the source code of a computer program may contain words such 
as Cout, XOR, Malloc that may be not found in the English dictionary. This 
show that the static dictionary is not a good choice for a general-purpose 
compressor. 

Adaptive dictionary 
In general adaptive-based method is preferable. Such a method can start 

with an empty dictionary or with a small , default dictionary, add words to 
it as they  are found in the input stream, and delete old  words,  since a big 
dictionary mean slow search. If a match is found, then a token ( index )  
will be written on the output  stream, otherwise the uncompressed word 
should be written and also added to the dictionary.  The last  step in each 
iteration check to see whether an old word should be deleted from the 
dictionary.  

The advantages of the adaptive dictionary are : 

1. It involves string search and match operation, rather than numerical 
computations. many programmers prefer that. 

2. Each of  the  encoder & decoder uses a different algorithm ( this is an 
asymmetric compression ). in statistical compression methods, the 
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decoder is normally the exact opposite of the encoder ( symmetric 
compression ).  

LZ77 (Sliding Window) 
 

The main idea of this method (Ziv 77) , is to use part of the previously 
seen input stream as the dictionary. The encoder maintains a window  to the 
input stream and shifts the input in that window from right to left as strings 
of symbols are being encoded. The method is thus based on a sliding 
window. The window is divided into two parts. The part on the left is called 
the search buffer. This is the current dictionary, and it always includes 
symbols that have recently been input and encoded. The part on the right is 
the look-ahead buffer, containing text yet to be encoded. In practical 
implementations the search buffer is some thousands of bytes long, while 
the look-ahead buffer is only tens of bytes long. The vertical bar between the 
t and the e below represents the current dividing line between the two 
buffers. We thus assume that the text "sir˽sid˽eastman˽easily˽t" has already 
been compressed, while the text "eases˽sea˽sick˽seals" still needs to be 
compressed.  

                     Search buffer          look-ahead buffer 
   
 
The encoder scans the search buffer backwards (from right to left) 

looking for a match to the first symbol  "e"  in the look-ahead buffer. It finds 
one at the "e" of the word easily. This e is at a distance (offset) of 8 from 
the end of the search buffer. The encoder then matches as many symbols 
following the two e's as possible. Three symbols "eas" match in this case, 
so the length of the match is 3. The encoder then continues the backward 
scan, trying to find longer matches. In our case, there is one more match, at 
the word  eastman, with distance 16, and it has the same length. The 
encoder selects the longest match or, if they are all the same length, the 
last one found and prepares the token (16, 3, "e").  

Selecting the last match, rather than the first one, simplifies the 
encoder, since it only has to keep track of the last match found. It is 
interesting to note that selecting the first match, while making the program 
somewhat more complex, also has an advantage. It selects the smallest 
offset. It would seem that this is not an advantage, since a token should have 
room for the largest possible offset.  

Exercise: How does the decoder know whether the encoder selects the 
first match or the last match? 

sir˽sid˽eastman˽easily˽t    eases˽sea˽sick˽seals …. 
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 In general, an LZ77 token has three parts: distance, length, and next 
symbol in the look-ahead buffer (which, in our case, is the second e of the 
word teases). This token is written on the output stream, and the window is 
shifted to the right four positions: three positions for the matched string 
and one position for the next symbol. 

                   Search buffer                look-ahead buffer 
 
 
If the backward search yields no match, an LZ77 token with zero 

distance and length and with the unmatched symbol is written. This is also 
the reason a token has to have a third component. distances with zero offset 
and length are common at the beginning of any compression job, when the 
search buffer is empty or almost empty. The first five steps in encoding our 
example are the following:  

                     Search buffer           look-ahead buffer 
  sir˽sid˽eastman˽ 
                                              s ir˽sid˽eastman˽e 
                                            si r˽sid˽eastman˽ea 
                                          sir ˽sid˽eastman˽eas 
                                         sir˽ sid˽eastman˽easi 
                                    sir˽sid ˽eastman˽easily˽t 

               
The output token  (distance, length, next symbol) of the first five steps are 
: 
     (0,0, "s") 
     (0,0, "i") 
     (0,0, "r") 
     (0,0, "˽") 
     (4,2, "d") 

In practice, the search buffer may be a few thousand bytes long, so the 
offset ( distance )  size is typically 10-12 bits. In practice, the look-ahead 
buffer is only a few tens of bytes long, so the size of the length field is just a 
few bits. The size of the  symbol  field is typically 8 bits. The total size of 
the output token  ( distance, length, next symbol ) may typically be : 

Output token = 11 + 5 + 8 = 24 bits.  
Decoding 

The decoder is much simpler than the encoder ( LZ77 is  thus an 
asymmetric compression method). It has to maintain a buffer, equal in size 
to the encoder's window. The decoder inputs a token, finds the match in its 

sir˽sid˽eastman˽easily˽t ease  s˽sea˽sick˽seals …. 
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buffer, writes the match and the third token field on the output stream, 
and shifts the matched string and the third field into the buffer.  

Because of the nature of the sliding window, the LZ77 method always 
compares the look-ahead buffer to the recently input text in the search 
buffer and never to text that was input long ago (and has thus been flushed 
out of the search buffer). The method thus implicitly assumes that patterns 
in the input data occur close together. Data that satisfies this assumption 
will compress well. 

 
argument 

The basic LZ77 method was improved in several ways. One way to 
improve it is to use variable-size "offset" and "length" fields in the tokens. 
Another way is to increase the sizes of both buffers. Increasing the size of 
the search buffer makes it possible to find better matches, but the tradeoff is 
an increased search time. A large search buffer thus requires a more 
sophisticated data structure that allows for fast search .  

 
Ex  ( LZ77 Coding ) 

 Given the below search buffer and look-ahead buffer . apply the LZ77 
compression method, show the resulted output token , and the dictionary 
content at each step.     

          Search buffer                look-ahead buffer 
 
 
 

Sol 
                     Search buffer           look-ahead buffer 

        ….that˽is ˽my˽hat˽ this˽is˽his˽hair   
                   that˽is˽my˽hat˽thi               s˽is˽his˽hair 
            that˽is˽my˽hat˽this˽i           s˽his˽hair 
          that˽is˽my˽hat˽this˽is˽h                                       is˽hair                   
    that˽is˽my˽hat˽this˽is˽his˽ha ir 
that˽is˽my˽hat˽this˽is˽his˽hair  
               

The output token  (distance, length, next symbol) of the first five steps are : 
     (15,2, "i") 
     (12,2, "i") 
     (15,2, "h") 
     (4, 4, "a") 
     (24,1, "r") 

that˽is ˽my˽hat˽  this˽is˽his˽hair….. 
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Ex  ( LZ77 DeCoding ) 

Given the below search buffer. For the following input token , apply the 
LZ77 decompression method, show the resulted dictionary content at each 
step.  

                                             Search buffer 

                               ….that˽is ˽my˽hat˽ 
 
(15,2, "i") , (12,2, "i") , (15,2, "h") , (4,4, "a") , (24,1, "r") 

 

LZ78 

The LZ78 method ([Ziv 78] does not use any search buffer, look-ahead 
buffer, or sliding window. Instead, there is a dictionary of previously 
encountered strings. This dictionary starts empty (or almost empty), and its 
size is limited only by the amount of available memory. The encoder outputs 
two-field tokens. The first field is a pointer to the dictionary; the second is 
the code of a symbol. Tokens do not contain the length of a string, since this 
is implied in the dictionary. Each token corresponds to a string of input 
symbols, and that string is added to the dictionary after the token is written 
on the compressed stream. Nothing is ever deleted from the dictionary, 
which is both an advantage over LZ77 (since future strings can be 
compressed even by strings seen in the distant past) and a liability (since the 
dictionary tends to grow fast and to fill up the entire available memory). 

The dictionary starts with the null string at position zero. As symbols 
are input and encoded, strings are added to the dictionary at positions 1, 2, 
and so on. When the next symbol  x  is read from the input stream, the 
dictionary is searched for an entry with the one-symbol string  x. If none are 
found, x is added to the next available position in the dictionary, and the 
token (0, x) is output. This token indicates the string "null x" (a 
concatenation of the null string and x). If an entry with  x is found (at 
position 37, say), the next symbol y is read, and the dictionary is searched 
for an entry containing the two-symbol string xy. If none are found, then 
string xy is added to the next available position in the dictionary, and the 
token (37, y) is output. This token indicates the string xy, since 37 is the 
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dictionary position of string x. The process continues until the end of the 
input stream is reached. 

In general, the current symbol is read and becomes a one-symbol string. 
The encoder then tries to find it in the dictionary. If  the symbol is found in 
the dictionary, the next symbol is read and concatenated with the first to 
form a two-symbol string that the encoder then tries to locate in the 
dictionary. As long as those strings are found in the dictionary, more 
symbols are read and concatenated to the string. At a certain point the string 
is not found in the dictionary, so the encoder adds it to the dictionary and 
outputs a token with the last dictionary match as its first field, and the last 
symbol of the string (the one that caused the search to fail) as its second 
field. Table  1. below shows the first 14 steps in encoding the string 

 
"sir˽sid˽eastman˽easily˽teases˽sea˽sick˽seals". 
 
dictionary Token (output) dictionary Token (output) 
0     null    
1     "s"       (0, "s") 8     "a"       (0, "a") 
2     "i"       (0, "i") 9     "st"       (1, "t") 
3     "r"      (0, "r") 10    ''m''     (0, ''m'') 
4     "˽"   (0, "˽") 11    "an"     (8, "n") 
5     "si"    (1, "i") 12    "˽ea"    (7, "a") 
6     "d"     (0, "d") 13    "sil"     (5,"1") 
7     "˽e"    (4, "e") 14    "y"      (0, "y") 

 
 
                  Table 1 : First 14 Encoding Steps in LZ78. 

  
In each step, the string added to the dictionary is the one being encoded, 

minus its last symbol. In a typical compression run, the dictionary starts 
with short strings, but as more text is being input and processed, longer 
and longer strings are added to it. The size of the dictionary can either be 
fixed or may be determined by the size of the available memory each time 
the LZ78 compression program is executed. A large dictionary may contain 
more strings and thus allow for longer matches, but the tradeoff is longer 
pointers (and thus bigger tokens) and slower dictionary search. 

Since the total size of the dictionary  is limited ( because the number of 
bits that allocated to the dictionary pointer are 16 bits ), it may fill up during 
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compression. This, in fact, happens all the time except when the input stream 
is unusually small. 

When the dictionary is full, delete some of the least recently used 
entries, to make room for new ones. Unfortunately there is no good 
algorithm to decide which entries to delete, and how many. 
 
LZ78 Decoding 

The LZ78 decoder works by building and maintaining the dictionary in 
the same way as the encoder does. 

It reads its input stream (which consists of a pointers to the dictionary 
and its corresponding letter ) and uses each pointer to retrieve uncompressed 
symbols from its dictionary and write them on its output stream. 

1. The dictionary starts with the null string at position zero. As symbols 
are input and decoded, strings are added to the dictionary at positions 
1, 2, and so on. 

2. Read the   input stream  ( pointers to the dictionary and its 
corresponding letter)  : 
a.  If the pointer is equal to zero, then the letter is outputted, and 

added to the next available position in the dictionary. 
b. If the pointer is greater than  zero , then concatenate the letter with 

the letter(s)  in  the dictionary that correspond to the pointer, the 
concatenated letters is outputted, and added to the next available 
position in the dictionary. 

Ex  
What is the output and the new dictionary entry of the LZ78 decompression 
method to the below code : 
(0, "s"),  (0, "i"), (0, "r"), (0, "˽"), (1, "i"), (0, "d"), (4, "e"), (0, "a"), (1, "t"), 
(0, ''m''), (8, "n"), (7, "a") , (5,"1"), (0, "y") 
Sol 
 

dictionary output dictionary output 
0     null    
1     "s"       s 8     "a"       a 
2     "i"       i 9     "st"       st 
3     "r"      r 10    ''m''     m 
4     "˽"   ˽ 11    "an"     an 
5     "si"    si 12    "˽ea"    ˽ea 
6     "d"     d 13    "sil"     si1 
7     "˽e"    ˽e 14    "y"      y 
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LZW 
This is method is  developed by Terry Welch in 1984. An LZW token 

consists of just a pointer to the dictionary. To best understand LZW, we will 
temporarily forget that the dictionary is a tree, and will think of it as an array 
of variable-size strings. The LZW method starts by initializing the dictionary 
to all the symbols in the alphabet. In the common case of 8-bit symbols, the 
first 256 entries of the dictionary (entries 0 through 255) are occupied before 
any data is input. Because the dictionary is initialized, the next input 
character will always be found in the dictionary. This is why an LZW  token 
can consist of just a pointer and does not have to contain a character code as 
in LZ77 and LZ78.  

The principle of  LZW is that the encoder inputs symbols one by one and 
accumulates them in a string I. After each symbol is input and is 
concatenated to I, the dictionary is searched for string  I. As long as I is 
found in the dictionary, the process continues. At a certain point, adding the 
next symbol x causes the search to fail; string  I  is in the dictionary but 
string  Ix  ( symbol x concatenated to I) is not. At this point the encoder 

(1) outputs the dictionary pointer that points to string I.  
(2) saves string Ix (which is now called a phrase) in the next available 

dictionary entry.  
(3) initializes string I to symbol x.  

To illustrate this process, we again use the text string 
"sir˽sid˽eastman˽easily˽teases˽sea˽sick˽seals". The steps are as 
follows: 
1. Initialize entries 0-255 of the dictionary to all 256 8-bit bytes. 
2. The first symbol  "s"  is input and is found in the dictionary ( in entry 115, 

since this is the ASCII code of  "s" ). The next symbol  "i"  is input, but  
"si"  is not found in the dictionary. The encoder performs the following: 
(1) outputs 115. 

    (2) saves string "si" in the next available dictionary entry (entry 256).  
    (3) initializes  I  to the symbol "i". 
3. The  "r" of sir is input, but string "ir" is not in the dictionary. The 

encoder : 
(1) outputs 105 (the ASCII code of "i"). 
(2) saves string "ir" in the next available dictionary entry (entry 257).   
(3) initializes I to the symbol "r". 

Table 2 summarizes all the steps of this process. Table 3 shows some of the 
original 256 entries in the LZW dictionary plus the entries added during 
encoding of the string above.  
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The complete output stream is (only the numbers are output, not the strings 
in parentheses) as follows: 
115 (s), 105 (i), 114 (r), 32 (˽), 256 (si), 100 (d), 32 (˽), 101 (e), 97 (a), 115 
(s), 116 (t), 109 (m), 97 (a), 110 (n), 262 (˽e), 264 (as), 105 (i), 108 (1), 121 
(y), 32 (˽), 116 (t), 263 (ea), 115 (s), 101 (e), 115 (s), 259 (us), 263 (ea), 259 
(˽s), 105 (i), 99 (c), 107 (k), 281 (˽se), 97 (a), 108 (1), 115 (s), eof. 
 
          in        new                                            in            new 
I       dict?     Entry       output              I         diet?       entry         output 
------------------------------------------------------------------------------------ 
s        Y                                                 y         Y 
si       N        256-si       115 (s)             y˽       N         274-y˽      121 (y) 
i        Y                                                  ˽         Y 
ir       N        257-ir       105 (i)              ˽t        N         275-˽t       32 (˽) 
r        Y                                                 t          Y 
r˽      N         258-r ˽     114 (r)             te         N        276-te       116 (t) 
˽       Y                                                  e         Y 
˽s     N          259-˽s      32 (˽)              ea        Y 
s       Y                                                  eas      N        277-eas      263 (ea) 
si      Y                                                  s         Y 
sid    N         260-sid     256 (si)            se       N        278-se       115 (s) 
d       Y                                                  e        Y 
d˽     N         261-d˽      100 (d)             es       N        279-es       101 (e) 
˽       Y                                                  s         Y 
˽e     N         262-˽e       32 (˽)               s˽       N        280-s˽        115 (s) 
e       Y                                                  ˽         Y 
ea     N         263-ea      101 (e)             ˽s       Y 
a       Y                                                  ˽se      N        281-˽se      259 (˽s) 
as      N        264-as       97 (a)              e         Y 
s       Y                                                  ea       Y 
st      N         265-st       115 (s)             ea˽     N         282-ea˽     263 (ea) 
t       Y                                                  ˽         Y 
tm    N         266-tm      116 (t)             ˽s       Y 
m     Y                                                  ˽si       N         283-˽si      259 (˽s) 
ma    N         267-ma     109 (m)           i         Y 
a       Y                                                  ic        N        284-ic        105 (i) 
an     N         268-an      97 (a)              c         Y 
n       Y                                                 ck       N        285-ck        99 (c) 
n˽     N         269-n˽      110 (n)            k         Y 
˽       Y                                                  k˽       N        286-k˽       107 (k) 
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˽e     Y                                                 ˽          Y 
˽ea   N        270-˽ea      262 (˽e)          ˽s        Y 
a      Y                                                  ˽se      Y 
as     Y                                                 ˽sea     N        287-˽sea    281 (˽se) 
asi    N        271-asi      264 (as)          a          Y 
i       Y                                                 al         N        288-al        97 (a) 
il      N        272-il        105 (i)             1         Y 
l       Y                                                 1s        N        289-ls        108 (1) 
ly     N        273-ly       108 (1)            s          Y 
                                                            s,eof    N        115 (s) 
 
Table 2: LZW Encoding of   "sir sid eastman easily teases sea sick seals". 
 
 
Index Symbol Index Symbol Index Symbol Index Symbol 

0 
1 
: 

32 
: 

97 
98 
99 
100 
101 

: 
107 
108 
109 

NULL 
SOH 

: 
Space 

: 
a 
b 
c 
d 
e 
: 
k 
l 

m 

110 
: 

115 
116 

: 
121 

: 
255 
256 
257 
258 
259 
260 
261 

 

n 
: 
s 
t 
: 
y 
: 

255 
si 
ir 
r˽ 
˽s 
sid 
d˽ 
 

262 
263 
264 
265 
266 
267 
268 
269 
270 
271 
272 
273 
274 
275 

 

˽e 
ea 
as 
st 
tm 
ma 
an 
n˽ 
˽ea 
asi 
il 
ly 
y˽ 
˽t 

276 
277 
278 
279 
280 
281 
282 
283 
284 
285 
286 
287 
288 
289 

te 
eas 
se 
es 
s˽ 
˽se 
ea˽ 
˽si 
ic 
ck 
k˽ 

˽sea 
al 
ls 

 
 
                       Table 3:  An LZW Dictionary. 
for i:=0 to 255 do 
     append  i  as a 1-symbol string to the dictionary; 
append  λ  to the dictionary; 
di:=dictionary index of  λ; 
repeat 
     read(ch); 
     if «di,ch» is in the dictionary then 
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         di:=dictionary index of «di,ch»; 
     else 
         output(di); 
         append «di,ch» to the dictionary; 
         di:=dictionary index of ch; 
     endif ; 
until end-of-input; 
 
The LZW Algorithm. 
 

Above is a pseudo-code listing of the algorithm. We denote by λ the 
empty string, and by «a, b» the concatenation of strings a and b. 

The line "append «di, ch» to the dictionary" is of special interest. It is 
clear that in practice, the dictionary may fill up. This line should therefore 
include a test for a full dictionary, and certain actions for the case where it is 
full. 

Since the first 256 entries of the dictionary are occupied right from the 
start, pointers to the dictionary have to be longer than 8 bits. A simple 
implementation would typically use 16-bit pointers, which allow for a 64K-
entry dictionary (where 64K = 216 = 65,536). Such a dictionary will, of 
course, fill up very quickly in all but the smallest compression jobs. Another 
interesting fact about LZW is that strings in the dictionary get only one 
character longer at a time. It therefore takes a long time to get long strings 
in the dictionary, and thus a chance to achieve really good compression. We 
can say that LZW adapts slowly to its input data. 
 
<> Exercise 1 : Use LZW to encode the string "alf˽eats˽alfalfa". Show the 
encoder output and the new entries added by it to the dictionary. 
 
<> Exercise  2 : Analyze the LZW compression of the string "aaaa ... ". 
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LZW Decoding 
In order to understand how the LZW decoder works, we should first 

recall the three steps the encoder performs each time it writes something on 
the output stream. They are  (1) it outputs the dictionary pointer that points 
to string  I,  (2) it saves string Ix in the next available entry of the dictionary, 
and  (3) it initializes string  I to symbol x. 

The decoder starts with the first entries of its dictionary initialized to all 
the symbols of the alphabet (normally 256 symbols). It then reads its input 
stream (which consists of pointers to the dictionary) and uses each pointer to 
retrieve uncompressed symbols from its dictionary and write them on its 
output stream. It also builds its dictionary in the same way as the encoder 
(this fact is usually expressed by saying that the encoder and decoder are 
synchronized, or that they work in lockstep). 

In the first decoding step, the decoder inputs the first pointer and uses it 
to retrieve a dictionary item  I. This is a string of symbols, and it is written 
on the decoder's output stream. String Ix needs to be saved in the dictionary, 
but symbol x is still unknown; it will be the first symbol in the next string 
retrieved from the dictionary. 

In each decoding step after the first, the decoder inputs the next pointer, 
retrieves the next string  J  from the dictionary, writes it on the output 
stream, isolates its first symbol x, and saves string Ix in the next available 
dictionary entry (after checking to make sure string Ix is not already in the 
dictionary). The decoder then moves J to I and is ready for the next step. 

In our "sir˽sid ... " example, the first pointer that's input by the decoder is 
115. This corresponds to the string "s", which is retrieved from the 
dictionary, gets stored in  I  and becomes the first thing write "i"  is 
retrieved into J and is also written on the output stream. J's first symbol is 
concatenated with  I , to form string "si", which  does not exist in the 
dictionary, and is therefore added to it as entry 256. Variable  J  is moved to 
I, so I is now the string "i". The next pointer is 114, so string "r" is 
retrieved from the dictionary into  J and is also written on the output stream. 
J's first symbol is concatenated with I , to form string "ir", which does not 
exist in the dictionary, and is added to it as entry 257. Variable J is moved to 
I, so  I is now the string  "r". The next step reads pointer 32, writes "˽" on 
the output stream, and saves string "r˽". 
o Exercise 3 : Decode the string "alf˽eats˽alfalfa" by using the encoding 

results from Exercise 1. 
o Exercise 4: Assume a two-symbol alphabet with the symbols a and b. 

show the first few steps for encoding and decoding the string "ababab ... " . 
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Ex 
Given the below basic dictionary 
 

0 1 2 3 4 5 6 7 8 
˽ a c f h n o s t 

  
What is the output and the new dictionary entry of the LZW decompression 
method to the below code : 
7, 4, 1, 5, 6, 5, 0, 3, 258, 6, 0, 2, 258, 0, 259, 8. 
 
Sol  
 
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 
sh ha an no on n˽ ˽f fa ano o˽ ˽c ca an˽ ˽n not 
 
 

output New entry 
7(s)  
4(h) 256(sh) 
1(a) 257(ha) 
5(n) 258(an) 
6(0) 259(no) 
5(n) 260(on) 
0 (˽) 261(n˽) 
3(f) 262(˽f) 
258(an) 263(fa) 
6(o) 264(ano) 
0(˽) 265(o˽) 
2(c) 266(˽c) 
258(an) 267(ca) 
0(˽) 268(an˽) 
259(no) 269(˽n) 
8(t) 270(not) 
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Arithmetic Coding 

The Huffman method is more efficient than the Shannon-Fano method, 
but either method rarely produces the best variable-size code. In fact these 
methods produce best results ( codes whose average size equals the entropy 
and  hence efficiency of 100 %  ) only when the symbols have probabilities 
of occurrence that are negative powers of  2. This is because these methods 
assign a code with an integral number of bits to each symbol in the alphabet. 
A symbol with probability 0.4 should ideally be assigned a 1.32-bit code, 
since -log2 0.4 ~ 1.32. The Huffman method, however, normally assigns 
such a symbol a code of 1 or 2 bits. 

Arithmetic coding overcomes this problem by assigning one (normally 
long) code to the entire input stream, instead of assigning codes to the 
individual symbols. The method reads the input stream symbol by symbol 
and appends more bits to the code each time a symbol is input and 
processed. To understand the method, it is useful to imagine the resulting 
code as a number in the range [0,1). [The notation [a, b) means the range of 
real numbers from a to b, not including b. The range is "closed" at a and 
"open" at b.   

The first step is to calculate, or at least to estimate, the frequencies of 
occurrence of each symbol. For best results, the exact frequencies are 
calculated by reading the entire input stream in the first pass of a two-pass 
compression job. If the program has good estimates of the frequencies from 
a different source, the first pass may be omitted. 
 
Example 1 

Given three symbols a1, a2, and a3, with probabilities P1 = 0.4, P2 = 
0.5, and P3 = 0.1, respectively. The interval [0,1) is divided among the three 
symbols by assigning each a subinterval proportional in size to its 
probability. The order of the subintervals is immaterial. In our example, the 
three symbols are assigned the subintervals [0,0.4), [0.4,0.9), and [0.9,1.0).  

 
Symbols     probability         Range  
      a3               0.1            [ 0.9 , 1.0 ) 
      a2               0.5            [ 0.4 , 0.9 ) 
      a1               0.4            [ 0.0 , 0.4 )  
 
To encode the string "a2a2a2a3", we start with the interval [0,1). The 

first symbol a2 reduces this interval to the subinterval from its 40% point to 
its 90% point; hence, the result is [0.4,0.9). 
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The second a2 reduces [0.4,0.9) in the same way (see note below) to 
[0.6,0.85), the third a2 reduces this to [0.7,0.825), and the a3 reduces this to 
the stretch from the 90% point of [0.7,0.825) to its 100% point, producing 
[0.8125,0.8250). The final code our method produces can be any number 
in this final range. 
The following rules summarize the main steps of arithmetic coding: 
1. Start by defining the "current interval" as [0,1). 
2. Repeat the following two steps for each symbol s in the input stream: 

2.1. Divide the current interval into subintervals whose sizes are 
proportional to the symbols' probabilities. 

2.2. Select the subinterval for s and define it as the new current interval. 
3. When the entire input stream has been processed in this way, the output 
should be any number that uniquely identifies the current interval ( i.e., any 
number inside the current interval). 

Table below show the calculation of the ranges of the arithmetic coding 
for the above example :  

 
Char            calculation  of low and high  

         a2    L        0 + ( 1 – 0 ) * 0.4 = 0.4 
                 H       0 + ( 1 – 0 ) * 0.9 = 0.9 
         a2    L        0.4 + ( 0.9 – 0.4 ) * 0.4 = 0.6 
                 H       0.4 + ( 0.9 – 0.4 ) * 0.9 = 0.85 
         a2    L        0.6 + ( 0.85 – 0.6 ) * 0.4 = 0.7 
                 H       0.6 + ( 0.85 – 0.6 ) * 0.9 = 0.825 
         a3    L        0.7 + ( 0.825 – 0.7 ) * 0.9 = 0.8125 
                 H       0.7 + ( 0.825 – 0.7 ) * 1.0 = 0.825 

 

Where Low and High are being calculated according to: 
 

NewLow  = OldLow + Range * LowRange(X); 
NewHigh = OldLow + Range * HighRange(X); 

Where: 
Range=OldHigh - OldLow  
LowRange (X), HighRange (X) indicates the low and high limits of the 

range of symbol X, respectively. 
For each symbol processed, the current interval gets smaller, so it takes 

more bits to express it, but the point is that the final output is a single 
number and does not consist of codes for the individual symbols. The 
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average code size can be obtained by dividing the size of the output (in bits) 
by the size of the input (in symbols).  

 
Example 2  

In this example, we show the compression steps for the short string 
"SWISS˽MISS". Table 1 shows the information prepared in the first step 
(the statistical model of the data). The five symbols appearing in the input 
may be arranged in any order. For each symbol, its frequency is first 
counted, followed by its probability of occurrence (the frequency divided by 
the string size, 10). The range [0,1) is then divided among the symbols, in 
any order, with each symbol getting a chunk, or a subrange, equal in size to 
its probability. Thus "s" gets the subrange [0.5,1.0) (of size 0.5), whereas the 
subrange of "I" is of size 0.2 [0.2,0.4).  

The symbols and Probabilities in Table 1 are written on the output 
stream before any of the bits of the compressed code. This table will be the 
first thing input by the decoder ( i.e. the decoder must receive this table 
before it start decompression ). 

 
Symbols     probability         Range  
      S               0.5              [ 0.5 , 1.0 ) 
      W              0.1              [ 0.4 , 0.5 ) 
       I               0.2              [ 0.2 , 0.4 )  
       M             0.1              [ 0.1 , 0.2 ) 
       ˽               0.1              [ 0.0 , 0.1 )   
 
Table 1. Probabilities and Ranges of "SWISS˽M1SS" Symbols  
 
 
The encoding process starts by defining two variables, Low and High, 

and setting them to 0 and 1, respectively. They define an interval [LOW, 
High). As symbols are being input and processed, the values of Low and 
High are moved closer together, to narrow the interval. 

After processing the first symbol "S", Low and High are updated to 0.5 
and 1, respectively. The resulting code for the entire input stream will be a 
number in this range (0.5 ≤ Code < 1.0). The rest of the input stream will 
determine precisely where, in the interval [0.5,1), the final code will lie.  

Table 2 below show the calculation of the ranges of the arithmetic 
coding for the example 2 above :  
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     Table 2. the process of arithmetic encoding  
 
The final code is the final value of  Low  0.71753375 , recall that :  
 
NewLow  = OldLow + Range * LowRange(X); 
NewHigh = OldLow + Range * HighRange(X); 
where 
Range=OldHigh - OldLow  
LowRange (X), HighRange (X) indicate the low and high limits of the 

range of symbol X, respectively. 
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Decoding 
The decoder works in the opposite way. It starts by inputting the 

symbols and their ranges (Table of Probabilities and Ranges of inputted 
Symbols).   
Example 1 

The decoder starts by reading the code 0.8125. The first digit is "8", so 
the decoder immediately knows that the entire code is a number of the form 
0.8.... , this number is inside the sub range [0.4, 0.9) of a2, so the first 
symbol is a2. The decoder then eliminates the effect of symbol a2 from the 
code by subtracting the lower limit 0.4 of a2 and dividing by the width of the 
sub range of a2 (0.5). The result is 0.825, which tells the decoder that the 
next symbol is a2 (since the sub range of a2 is [0.4, 0.9). 

Table below show the extracting of the symbols from  the arithmetic 
code for the Example 1 above :  

 
Code = 0.8125                   x = a2    because a2 rang is [0.4 , 0.9 )  
Code = ( 0.8125 – 0.4 ) / 0.5 = 0.825                     x = a2 
Code = ( 0.825 – 0.4 ) / 0.5 = 0.85                         x = a2 
Code = ( 0.85 – 0.4 ) / 0.5 = 0.9                             x = a3 
Code = ( 0.9 – 0.9 ) / 0.1 = 0.0                               end of decoding 
 
To eliminate the effect of symbol X from the code, the decoder performs 

the operation  : 
  
Code  =  ( Code - LowRange (X) ) / Range  
 where  Range is the width of the sub range of  X. 
 

Example 2 
The decoder start by reading the code   0.71753375,   The first digit is 

"7", so the decoder immediately knows that the entire code is a number of 
the form 0.7.... , this number is inside the sub range [0.5, 1) of S, so the first 
symbol is S. The decoder then eliminates the effect of symbol S from the 
code by subtracting the lower limit 0.5 of S and dividing by the width of the 
sub range of S (0.5). The result is 0.4350675, which tells the decoder that the 
next symbol is W (since the sub range of W is [0.4, 0.5)). 

To eliminate the effect of symbol X from the code, the decoder performs 
the operation  

Code  = ( Code - LowRange (X) ) / Range   
where Range is the width of the sub range of  X. 
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Table 3 summarizes the steps for decoding our example 2  above : 
 

 
         Table 3 .  The process of  Arithmetic Decoding  
 
Skewed Probabilities Problem 

The next example is of three symbols with probabilities as shown in 
Table below. Notice that the probabilities are very different. One is large 
(97.5%) and the others much smaller. This is a case of skewed probabilities 
problem. 

Symbols         probability                 Range  
      a1               0.001838            [ 0.998162, 1.0 ) 
      a2               0.975                  [ 0.023162, 0.998162 ) 
      a3               0.023162            [ 0.0 , 0.023162)  
 
 
Encoding the string a2a2ala3a3 produces the strange numbers (accurate 

to 16 digits) in Table 4, where the two rows for each symbol correspond to 
the Low and High values, respectively. At first glance, it seems that the 
resulting code is longer than the original string.  

Decoding this string is shown in Table 5 involves a special problem. 
After eliminating the effect of a1, on line 3, the result is 0. Earlier, we 
implicitly assumed that this means the end of the decoding process, but 
now we know that there are two more occurrences of a3 that should be 
decoded. These are shown on lines 4, 5 of the table. This problem always 
occurs when the last symbol in the input stream is the one whose subrange 
starts at zero.  
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    Table 4. Encoding the String a2a2a1a3a3 
 
 

 
  Table 5. Decoding the String a2a2a1a3a3 
 
In order to distinguish between such a symbol and the end of the input 

stream, we need to define an additional symbol, the end-of-input (or end-of-
file, eof). This symbol should be added, with a small probability, to the 
frequency table (as the first symbol; see Table below), and it should be 
added and encoded at the end of the input stream. 

Symbols         probability                 Range  
      eof              0.000001            [ 0.999999, 1.0 ) 
      a1               0.001837            [ 0.998162, 0.999999 ) 
      a2               0.975                  [ 0.023162, 0.998162 ) 
      a3               0.023162            [ 0.0 , 0.023162)  
 
Tables 6  and 7  show how the string a3a3a3a3eof is encoded into the 

number 0.0000002878086184764172, and then decoded properly. Without 
the eof symbol, a string of all a3s would have been encoded into a 0. 
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Table 6. Encoding the String a3a3a3a3eof 
 

 
Table 7. Decoding the String a3a3a3a3eof 
 
 
 
Notice how the low value is 0 until the eof is input and processed, and 

how the high value quickly approaches 0. Now is the time to mention that 
the final code does not have to be the final low value but can be any 
number between the final low and high values. In the example of 
a3a3a3a3eof, the final code can be the much shorter number 
0.0000002878086 (or 0.0000002878087 or even 0.0000002878088). 
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If the size of the input stream is known, it is possible to do without an 
eof symbol. The encoder can start by writing this size (unencoded) on the 
output stream. The decoder reads the size, starts decoding, and stops when 
the decoded stream reaches this size. If the decoder reads the compressed 
stream byte by byte, the encoder may have to add some zeros at the end, to 
make sure the compressed stream can be read in groups of 8 bits. 
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