

4!"Class

2023-2024
Multimedia Data

Compression
ةددعتملا طئاسولا طغض

 يلع بنیز .م.م : ةداملا ذاتسأ

Multimedia data compression 2024| Zainab Ali

1

 1.Image Compression

Historically, data compression was not one of the first fields of

computer science. It seems that workers in the field needed the

first 20 to 25 years to develop enough data before they felt the

need for compression. Today, when the computer field is about 50

years old, data compression is a large and active field, as well as

big business.

A digital image is a rectangular array of dots, or picture elements,

arranged in m rows and n columns. The expression m × n is called

the resolution of the image, and the dots are called pixels (except

in the cases of fax images and video compression, where they are

referred to as pels). The term “resolution” is sometimes also used

to indicate the number of pixels per unit length of the image. Thus,

dpi stands for dots per inch. For the purpose of image compression,

it is useful to distinguish the following types of images:

1. A bi-level (or monochromatic) image. This is an image where the

pixels can have one of two values, normally referred to as black and

white.

2. A grayscale image.

3. A continuous-tone image. This type of image can have many similar

colors (or grayscales). When adjacent pixels differ by just one unit,

it is hard or even impossible for the eye to distinguish their

colors. A continuous-tone image is obtained by taking a photograph

with a digital camera, or by scanning a photograph or a painting.

Figures 1 through 4 are typical examples of continuous-tone images.

4. A discrete-tone image (also called a graphical image or a

synthetic image). This is normally an artificial image. Examples are

an artificial object or machine, a page of text, a chart, a cartoon,

or the contents of a computer screen. Figure 5 is a typical example

of a discrete-tone image.

Multimedia data compression 2024| Zainab Ali

2

5. A cartoon-like image. This is a color image that consists of

uniform areas. Each area has a uniform color but adjacent areas may

have very different colors. This feature may be exploited to obtain

excellent compression.

Fig.(1) Fig.(2) Fig.(3) Fig.(4)

 A continuous-tone images

Fig. (5) A Discrete-Tone Image.

An image, after all, exists for people to look at, so, when it is

compressed, it is acceptable to lose image features to which the eye

is not sensitive. This is one of the main ideas behind the many

lossy image compression methods.

Multimedia data compression 2024| Zainab Ali

3

In general, information can be compressed if it is redundant. It has

been mentioned several times that data compression amounts to

reducing or removing redundancy in the data. With lossy compression,

however, we have a new concept, namely compressing by removing

irrelevancy. An image can be lossy-compressed by removing irrelevant

information even if the original image does not have any redundancy.

(Digitizing an image involves two steps: sampling and quantization.

Sampling an image is the process of dividing the two-dimensional

original image into small region of pixels. Quantization is the

process of assigning an integer value to each pixel. Notice that

digitizing sound involves the same two steps, with the difference

that sound is one-dimensional.)

1.1 JPEG Compression

JPEG (Joint Photographic Experts Group) is an advance lossy/lossless

compression method for color or grayscale still images (not videos).

It does not handle bi-level (black and white) images very well. It

also works best on continuous-tone images, where adjacent pixels

have similar colors.

An important feature of JPEG is its use of many parameters, allowing

the user to adjust the amount of the data lost (and thus also the

compression ratio) over a very wide range. Often, the eye cannot see

any image degradation even at compression factors of 10 or 20.

There are two operating modes, lossy (also called baseline) and

lossless (which typically produces compression ratios of around

0.5). Most implementations support just the lossy mode. This mode

includes progressive and hierarchical coding.

Multimedia data compression 2024| Zainab Ali

4

The main goals of JPEG compression are the following:

1. High compression ratios.

2. The use of many parameters.

3. Obtaining good results with any kind of continuous-tone image,

regardless of image dimensions, color spaces, pixel aspect ratios,

or other image features.

4. A sophisticated, but not too complex compression method, allowing

software and hardware implementations on many platforms.

5. Several modes of operation:

(a) A sequential mode where each image component (color) is

compressed in a single left-to-right, top-to-bottom scan;

(b) A progressive mode where the image is compressed in multiple

blocks (known as “scans”) to be viewed from coarse to fine detail;

(c) A lossless mode that is important in cases where the user decides

that no pixels should be lost.

(d) A hierarchical mode where the image is compressed at multiple

resolutions allowing lower-resolution blocks to be viewed without

first having to decompress the following higher-resolution blocks.

The main JPEG compression steps are:

1. Color images are transformed from RGB a luminance/chrominance

color space. The eye is sensitive to small changes in luminance but

not in chrominance, so the chrominance part can later lose much

data, and thus be highly compressed, without visually weaken the

overall image quality much.

Multimedia data compression 2024| Zainab Ali

5

2. Color images are down-sampled by creating low-resolution pixels

from the original ones (this step is used only when hierarchical

compression is selected; it is always skipped for grayscale images).

The down-sampling is not done for the luminance component. Since the

luminance component is not touched, there is no noticeable loss of

image quality.

3. The pixels of each color component are organized in groups of

8×8 pixels called data units, and each data unit is compressed

separately. If the number of image rows or columns is not a multiple

of 8, the bottom row and the rightmost column are duplicated as many

times as necessary. The fact that each data unit is compressed

separately is one of the drawbacks of JPEG. If the user asks for

maximum compression, in the decompressed image Human manipulation of
will appear due to differences between blocks. Figure 6 is an extreme

example of this effect.

4. The discrete cosine transform (DCT) is then applied to each data

unit to create an 8×8 map of frequency components. They represent

the average pixel value and successive higher-frequency changes

within the group. This prepares the image data for the step of losing

information. Since DCT involves the function cosine, it must involve

some loss of information due to the limited accuracy of computer

arithmetic. This means that even without the main lossy step (step

5 below), there will be some loss of image quality, but it is normally

small.

5. Each of the 64 frequency components in a data unit is divided by

a separate number called its quantization coefficient (QC), and then

rounded to an integer. This is where information is permanently lost.

Large QCs cause more loss, so the high frequency components typically

have larger QCs. Each of the 64 QCs is a JPEG parameter and can, in

principle, be specified by the user. In practice, most JPEG

implementations use the QC tables recommended by the JPEG standard

for the luminance and chrominance image components (Table 1).

Multimedia data compression 2024| Zainab Ali

6

6. The 64 quantized frequency coefficients (which are now integers)

of each data unit are encoded using a combination of RLE and Huffman

coding.

7. The last step adds headers and all the required JPEG parameters,

and outputs the result.

Fig. (6)	JPEG Blocking Artifacts

 The compressed file may be in one of three formats:

(1) the interchange format, in which the file contains the compressed

image and all the tables needed by the decoder (mostly quantization

tables and tables of Huffman codes).

(2) the abbreviated format for compressed image data, where the file

contains the compressed image and may contain no tables (or just a

few tables).

(3) the abbreviated format for table-specification data, where the

file contains just tables, and no compressed image.

The second format makes sense in cases where the same encoder/decoder

pair is used, and they have the same tables built in. The third

format is used in cases where many images have been compressed by

the same encoder, using the same tables. When those images need to

be decompressed, they are sent to a decoder preceded by one file

with table-specification data. Figure 7 shows JPEG diagram.

Multimedia data compression 2024| Zainab Ali

7

Fig. (7)	JPEG Block Diagram

1.1.1 Luminance

Luminance is proportional to the power of the light source. It is

similar to intensity, but the spectral composition of luminance is

related to the brightness sensitivity of human vision.

The eye is very sensitive to small changes in luminance, which is

why it is useful to have color spaces that use Y as one of their

three parameters. A simple way to do this is to subtract Y from the

Blue and Red components of RGB, and use the three components Y, B −

Y, and R − Y as a new color space. The last two components are called

chroma. They represent color in terms of the presence or absence of

blue (Cb) and red (Cr) for a given luminance intensity.

Image Image

Color Transform Color Transform

DCT IDCT

Quantization Quantization

Encoding Decoding

JPEG JPEG

Multimedia data compression 2024| Zainab Ali

8

Y is defined to have a range of 16 to 235; Cb and Cr are defined to

have a range of 16 to 240, with 128 equal to zero.

Transforming RGB to YCbCr is done by (note the small weight of blue):

Y = (77/256)R + (150/256)G + (29/256)B

Cb = −(44/256)R − (87/256)G + (131/256)B + 128

Cr = (131/256)R − (110/256)G − (21/256)B + 128

while the opposite transformation is

R = Y + 1.371(Cr − 128)

G = Y − 0.698(Cr − 128) − 0.336(Cb − 128)

B = Y + 1.732(Cb − 128)

When performing YCbCr to RGB conversion, the resulting RGB values

have a nominal range of 16–235, with possible occasional values in

0–15 and 236–255.

1.1.2 The Discrete Cosine Transform

The JPEG committee elected to use the DCT because of its good

performance, because it does not assume anything about the structure

of the data and because there are ways to speed it up.

The JPEG standard calls for applying the DCT not to the entire image

but to data units (blocks) of 8 × 8 pixels figure 8 shows Graphical

illustration for (8*8) 2D DCT. The reasons for this are:

Multimedia data compression 2024| Zainab Ali

9

(1) Applying DCT to large blocks involves many arithmetic operations

and is therefore slow. Applying DCT to small data units is faster.

(2) Experience shows that, in a continuous-tone image, correlations

between pixels are short range. A pixel in such an image has a value

(color component or shade of gray) that’s close to those of its

near neighbors, but has nothing to do with the values of far

neighbors. The JPEG DCT is therefore executed by Equation (1),

duplicated here for n = 8.

!!" =
1
4%!%"&&'#$ cos +

(2. + 1)12
16 4	cos +(26 + 1)7216 4

%

$&'

%

#&'
								Eq. (1)

;ℎ=>=	1, 7, ., 6	 = 0… . .7	CDE	Fℎ=	GHDIFCDF	%!%"	E=F=>J1D=E		KL	

	%(= M
1
√2

,												O = 0
1,															O > 0

						CDE	0 ≤ 	i, j	 ≤ 	7.			

The JPEG decoder works by computing the inverse DCT (IDCT), Equation

(2), duplicated here for n = 8

'#$ =
1
4&&%!%"!!" cos +

(2. + 1)12
16 4	cos +(26 + 1)7216 4

%

"&'

%

!&'
								Eq. (2)

;ℎ=>=	1, 7, ., 6	 = 0… . .7	CDE	Fℎ=	GHDIFCDF	%!%"	E=F=>J1D=E		KL	

	%(= M
1
√2

,												O = 0
1,															O > 0

						CDE	0 ≤ 	i, j	 ≤ 	7.			

Multimedia data compression 2024| Zainab Ali

10

Fig.(8) Graphical illustration for (8*8) 2D DCT

The DCT is JPEG’s key to lossy compression. The unimportant image

information is reduced or removed by quantizing the 64 DCT

coefficients, especially the ones located toward the lower-right.

If the pixels of the image are correlated, quantization does not

degrade the image quality much. For best results, each of the 64

coefficients is quantized by dividing it by a different quantization

coefficient (QC). All 64 QCs are parameters that can be controlled,

in principle, by the user.

1.1.3 Quantization

After each 8×8 data unit of DCT coefficients Gij is computed, it

is quantized. This is the step where information is lost (except for

some unavoidable loss because of finite precision calculations in

other steps). Each number in the DCT coefficients matrix is divided

by the corresponding number from the particular “quantization

table” used, and the result is rounded to the nearest integer.

Multimedia data compression 2024| Zainab Ali

11

Three such tables are needed, for the three color components. The

JPEG standard allows for up to four tables, and the user can select

any of the four for quantizing each color component. The 64 numbers

that constitute each quantization table are all JPEG parameters. In

principle, they can all be specified and get the desired performance

by the user for maximum compression. In practice, few users have the

patience or expertise to experiment with so many parameters, so JPEG

software normally uses the following two approaches:

1. Default quantization tables. Two such tables, for the luminance

(grayscale) and the chrominance components, are the result of many

experiments performed by the JPEG committee. They are included in

the JPEG standard and are reproduced here as Table (1). It is easy

to see how the QCs in the table generally grow as we move from the

upper left corner to the bottom right corner. This is how JPEG

reduces the DCT coefficients with high spatial frequencies.

2. A simple quantization table Q is computed, based on one parameter

R specified by the user. A simple expression such as Qij = 1 + (i +

j) × R guarantees that QCs start small at the upper-left corner and

get bigger toward the lower-right corner. Table (2) shows an example

of such a table with R = 2.

16 11 10 16 24 40 51 61 17 18 24 47 99 99 99 99

12 12 14 19 26 58 60 55 18 21 26 66 99 99 99 99

14 13 16 24 40 57 69 56 24 26 56 99 99 99 99 99

14 17 22 29 51 87 80 62 47 66 99 99 99 99 99 99

18 22 37 56 68 109 103 77 99 99 99 99 99 99 99 99

24 35 55 64 81 104 113 92 99 99 99 99 99 99 99 99

49 64 78 87 103 121 120 101 99 99 99 99 99 99 99 99

72 92 95 98 112 100 103 99 99 99 99 99 99 99 99 99

Luminance Chrominance

Table (1) Recommended Quantization Tables

Multimedia data compression 2024| Zainab Ali

12

1 3 5 7 9 11 13 15

3 5 7 9 11 13 15 17

5 7 9 11 13 15 17 19

7 9 11 13 15 17 19 21

9 11 13 15 17 19 21 23

11 13 15 17 19 21 23 25

13 15 17 19 21 23 25 27

15 17 19 21 23 25 27 29

Table 2: The Quantization Table 1 + (i + j) × 2

If the quantization is done correctly, very few nonzero numbers will

be left in the DCT coefficients matrix, and they will typically be

concentrated in the upper-left region. These numbers are the output

of JPEG, but they are further compressed before being written on the

output stream. In the JPEG literature this compression is called

“entropy coding,” and in the next Section shows in detail how it

is done. Three techniques are used by entropy coding to compress the

8 × 8 matrix of integers:

1. The 64 numbers are collected by scanning the matrix in zigzags
Figure 9. This produces a string of 64 numbers that starts

with some nonzeros and typically ends with many consecutive

(one after the other) zeros. Only the nonzero numbers are

output (after further compressing them) and are followed by a

special end-of block (EOB) code. This way there is no need to

output the trailing zeros (we can say that the EOB is the run

length encoding of all the trailing zeros).

2. The nonzero numbers are compressed using Huffman coding.
3. The first of those numbers (the DC coefficient) is treated

differently from the others (the AC coefficients).

Multimedia data compression 2024| Zainab Ali

13

Fig. (9) zigzags 8*8

1.1.4 Coding

Each 8×8 matrix of quantized DCT coefficients contains one DC

coefficient [at position (0,0), the top left corner] and 63 AC

coefficients. The DC coefficient is a measure of the average value

of the 64 original pixels, constituting the data unit. Experience

shows that in a continuous-tone image, adjacent data units of pixels

are normally correlated in the sense that the average values of the

pixels in adjacent data units are close. We already know that the

DC coefficient of a data unit is a multiple of the average of the

64 pixels constituting the unit.

This implies that the DC coefficients of adjacent data units don’t

differ much. JPEG outputs the first one (encoded), followed by

differences (also encoded) of the DC coefficients of consecutive

data units.

Example: If the first three 8×8 data units of an image have

quantized DC coefficients of 1118, 1114, and 1119, then the JPEG

output for the first data unit is 1118 (Huffman encoded, see below)

followed by the 63 (encoded) AC coefficients of that data unit. The

output for the second data unit will be 1114 − 1118 = −4 (also

Huffman encoded), followed by the 63 (encoded) AC coefficients of

Multimedia data compression 2024| Zainab Ali

14

that data unit, and the output for the third data unit will be.

1119 − 1114 = 5 (also Huffman encoded), again followed by the 63

(encoded) AC coefficients of that data unit. This way of handling

the DC coefficients is worth the extra trouble, because the

differences are small.

Coding the DC differences is done with Table 3. Each row has a row

number (on the left), the unary code for the row (on the right), and

several columns in between. Each row contains greater numbers (and

also more numbers) than its previous but not the numbers contained

in previous rows.

Row i contains the range of integers [−(2! − 1), +(2! − 1)] but is
missing the middle range [−(2!)* − 1), +(2!)* − 1)]. Thus, the rows
get very long, which means that a simple two dimensional array is

not a good data structure for this table. In fact, there is no need

to store these integers in a data structure, since the program can

figure out where in the table any given integer x is supposed to

reside by analyzing the bits of x.

The first DC coefficient to be encoded in our example is 1118. It

resides in row 11 column 930 of the table (column numbering starts

at zero), so it is encoded as 111111111110|01110100010 (the unary

code for row 11, followed by the 11-bit binary value of 930). The

second DC difference is −4. It resides in row 3 column 3 of Table 3

, so it is encoded as 1110|011 (the unary code for row 3, followed

by the 3-bit binary value of 3).

Point 2 above has to do with the specific way the 63 AC coefficients

of a data unit are compressed. It uses a combination of RLE and

either Huffman or arithmetic coding. The idea is that the sequence

of AC coefficients normally contains just a few nonzero numbers,

with runs of zeros between them, and with a long run of trailing

zeros. For each nonzero number x, the encoder:

Multimedia data compression 2024| Zainab Ali

15

(1) finds the number Z of consecutive zeros preceding x;

(2) finds x in Table 3 and prepares its numbers (R and C);

(3) the pair (R, Z) [that’s (R, Z), not (R, C)] is used as row and

column numbers for Table 4; and

(4) the Huffman code found in that position in the table is

concatenated to C (where C is written as an R-bit number) and the

result is (finally) the code emitted by the JPEG encoder for the AC

coefficient x and all the consecutive zeros preceding it.

0: 0 0

1: -1 1 10

2: -3 -2 2 3 110

3: -7 -6 -5 -4 4 5 6 7 ... 1110

4: -15 -14 … -9 -8 8 9 10 … 15 11110

5: -31 -30 -29 … -17 -16 16 17 31 111110

6: -63 -62 -61 … -33 -32 32 33 63 1111110

7: -127 -126 -125 … -65 -64 64 65 127 11111110

14: -16383 -

16382

-16381 … -8193 -8192 8192 8193 16383 111111111111110

15: -32767 -

32766

-32765 … -16385 -16384 16384 16385 32767 1111111111111110

16: 32768 … 1111111111111111

Table 3: Coding the Differences of DC Coefficients

The reader should notice the EOB code at position (0, 0) and the ZRL

code at position (0,15). The former indicates end-of-block, and the

latter is the code emitted for 15 consecutive zeros when the number

of consecutive zeros exceeds 15. These codes are the ones recommended

for the luminance AC coefficients of in specific Table. The EOB and

ZRL codes recommended for the chrominance AC coefficients of in

specific Table are 00 and 1111111010, respectively.

Multimedia data compression 2024| Zainab Ali

16

As an example consider the sequence

1118,2,0,−2,0,...,0,−1,0,....

 13

The first AC coefficient 2 has no zeros preceding it, so Z = 0. It

is found in Table 3 in row 2,column 2,so R=2 and C=2. The Huffman

code in position(R,Z)=(2,0) of Table 4 is 01, so the final code

emitted for 2 is 01|10. The next nonzero coefficient, −2, has one

zero preceding it, so Z = 1. It is found in Table 3 in row 2, column

1, so R = 2 and C = 1. The Huffman code in position (R,Z) = (2,1)

of Table 4 is 11011, so the final code emitted for 2 is 11011|01.

The code is emitted for the last nonzero AC coefficient, −1 is

R=1,C=0,Z=13 so (R,Z)=(1,13)=1110101 , so the final code emitted for

-1 is 1110101|0.

Finally, the sequence of trailing zeros is encoded as 1010 (EOB),

so the output for the above sequence of AC coefficients is

01101101110111010101010. We saw earlier that the DC coefficient is

encoded as 111111111110|1110100010, so the final output for the

entire 64-pixel data unit is the 46-bit number

1111111111100111010001001101101101111010101010.

 DC 2 -2 -1 EOB

These 46 bits encode one color component of the 64 pixels of a data

unit. Let’s assume that the other two color components are also

encoded into 46-bit numbers. If each pixel originally consists of

24 bits, then this corresponds to a compression factor of

64 × 24/(46 × 3) ≈ 11.13 .

Multimedia data compression 2024| Zainab Ali

17

R Z 0 1 ……… 15

0: 1010 …… 11111111001(ZRL)

1: 00 1100 …… 1111111111110101
2: 01 11011 …… 1111111111110110
3: 100 1111001 …… 1111111111110111
4: 1011 111110110 …… 1111111111111000
5: 11010 11111110110 1111111111111001
: : : : :

Table 4: Coding AC Coefficients.

Multimedia data compression 2024| Msc. Zainab Ali

1

1.2 Progressive Image Compression

Progressive compression is an attractive choice when compressed

images are transmitted over a communications line and are

decompressed and viewed in real time. When such an image is received

and is decompressed, the decoder can very quickly display the entire

image in a low-quality format, and improve the display quality as

more and more of the image is being received and decompressed. A

user watching the image developing on the screen can normally

recognize most of the image features after only 5–10% of it has been

decompressed.

This should be compared to raster-scan image compression. When an

image is raster scanned and compressed, a user normally cannot tell

much about the image when only 5–10% of it has been decompressed and

displayed. Images are supposed to be viewed by humans, which is why

progressive compression makes sense even in cases where it is slower

or less efficient than nonprogressive.

Perhaps a good way to think of progressive image compression is to

imagine that the encoder compresses the most important image

information first, then compresses less important information and

appends it to the compressed stream, and so on. This explains why

all progressive image compression methods have a natural lossy

option; simply stop compressing at a certain point. The user can

control the amount of loss by means of a parameter that tells the

encoder how soon to stop the progressive encoding process. The sooner

encoding is stopped, the better the compression ratio and the higher

the data loss.

Multimedia data compression 2024| Msc. Zainab Ali

2

Another advantage of progressive compression becomes apparent when

the compressed file has to be decompressed several times and

displayed with different resolutions. The decoder can, in each case,

stop the decompression when the image has reached the resolution of

the particular output device used.

Progressive image compression has a connection with JPEG. JPEG uses

the DCT to break the image up into its spatial frequency components,

and it compresses the low-frequency components first. The decoder

can therefore display these parts quickly, and it is these low-

frequency parts that contain the principal image information. The

high-frequency parts contain image details. Thus, JPEG encodes

spatial frequency data progressively.

It is useful to think of progressive decoding as the process of

improving image features over time, and this can be achieved in

three ways:

1. Encode spatial frequency data progressively. An observer watching

such an image being decoded sees the image changing from blurred to

sharp. Methods that work this way typically feature medium speed

encoding and slow decoding. This type of progressive compression is

sometimes called SNR progressive or quality progressive.

2. Start with a gray image and add colors or shades of gray to it.

An observer watching such an image being decoded will see all the

image details from the start, and will see them improve as more

color is continuously added to them. method that works this way

normally features slow encoding and fast decoding.

Multimedia data compression 2024| Msc. Zainab Ali

3

3. Encode the image in layers, where early layers consist of a few

large low-resolution pixels, followed by later layers with smaller

higher-resolution pixels. A person watching such an image being

decoded will see more detail added to the image over time. Such a

method thus adds detail (or resolution) to the image as it is being

decompressed. This way of progressively encoding an image is called

pyramid coding or hierarchical coding. Most progressive methods use

this principle. Figure 11 illustrates the three progressive methods

mentioned here. It should be contrasted with Figure 10, which

illustrates sequential decoding.

Fig. (10) Sequential Decoding.

Multimedia data compression 2024| Msc. Zainab Ali

4

Fig. (11): Progressive Decoding.

Multimedia data compression 2024| Msc. Zainab Ali

5

Assuming that the image size is 2! × 2! = 4! pixels, the simplest
method that comes to mind, when trying to implement progressive

compression, is to calculate each pixel of layer i − 1 as the average

of a group of 2×2 pixels of layer i. Thus, layer n is the entire

image, layer n − 1 contains 2!"#× 2!"# = 4!"# large pixels of size
2×2, and so on, down to layer 1, with 4!"! = 1 large pixel,

representing the entire image. If the image isn’t too large, all

the layers can be saved in memory. The pixels are then written on

the compressed stream in reverse order, starting with layer 1. The

single pixel of layer 1 is the “parent” of the four pixels of

layer 2, each of which is the parent of four pixels in layer 3, and

so on. The total number of pixels in the pyramid is 33% more than

the original number!

A simple way to bring the total number of pixels in the pyramid down

to 4! is to include only three of the four pixels of a group in
layer i, and to compute the value of the 4th pixel using the parent

of the group (from the preceding layer, i − 1) and its three siblings.

Example: Figure 12c shows a 4×4 image that becomes the third layer

in its progressive compression. Layer two is shown in Figure 12b,

where, for example, pixel 81.25 is the average of the four pixels

90, 72, 140, and 23 of layer three. The single pixel of layer one

is shown in Figure 12a.

Multimedia data compression 2024| Msc. Zainab Ali

6

54.125

 81.25 32.5 90 72 58 33

 140 23 21 18

 61.25 41.5 100 70 72 18

 16 59 44 32

(a) (b) (c)

54

 81 33 90 72 58 33

 140 23 21 18

 61 42 100 70 72 18

 16 59 44 32

(d) (e) (f)

 140

max max min 90 72 58 33

 140 18 140 23 21 18

 min max 100 70 72 18

 16 72 16 59 44 32

(g) (h) (i)
Fig. (12): Progressive Image Compression

The compressed file should contain just the numbers

54.125, 32.5,41.5,61.25, 72,23,140, 33,18,21, 18,32,44, 70,59,16

(properly encoded, of course), from which all the missing pixel

values can easily be determined. The missing pixel 81.25, e.g., can

be calculated from (x + 32.5 + 41.5 + 61.25)/4 = 54.125.

A small complication with this method is that averages of integers

may be non-integers. If we want our pixel values to remain integers,

we either have to lose precision or to keep using longer and longer

integers.

 Figure 12 d, e,f shows the results of rounding off our pixel values

and thus losing some image information. The content of the compressed

file in this case should be

Multimedia data compression 2024| Msc. Zainab Ali

7

54, 33,42,61, 72,23,140, 33,18,21, 18,32,44, 70,59,16.

The first missing pixel, 81, of layer three can be determined from

the equation (x + 33 + 42 + 61)/4 = 54, which yields the (slightly

wrong) value 80.

One alternative approach is to select the maximum (or the minimum)

pixel of a group as the parent. This has the advantage that the

parent is identical to one of the pixels in the group. The encoder

has to encode just three pixels in each group, and the decoder

decodes three pixels and uses the parent as the fourth pixel, to

complete the group. When encoding consecutive groups in a layer, the

encoder should alternate between selecting the maximum and the

minimum as parents, since always selecting the same creates

progressive layers that are either too dark or too bright. Figure

12 g, h, i shows the three layers in this case.

The compressed file should contain the numbers

140, (0),18,72,16, (3),90,72,23, (2),58,33,21, (0),18,32,44,

(3),100,70,59,

where the numbers in parentheses are two bits each. They tell where

(in what quadrant) the parent from the previous layer should go.

Notice that quadrant numbering is #$%
#
&$.

Selecting the median of a group is a little slower than selecting

the maximum or the minimum, but it improves the appearance of the

layers during progressive decompression.

Lecture 1 | Zainab Ali

1

2. Video Compression

With the rapid advances in computers in the 1980s, 1990s and 2000s

and so on came multimedia applications, where pictures and sound are

combined in the same file. Such files tend to be large, which is why

compressing them became a natural application.

Video compression is the process of reducing the size of a video

file while maintaining its visual quality. This is typically done

by removing redundant or unnecessary information from the video,

such as repeating patterns or colors, and then encoding the remaining

data in a more efficient way.

2.1 Digital Video

Digital video is, in principle, a sequence of images, called frames,

displayed at a certain frame rate (so many frames per second, or

fps) to create the illusion of animation. This rate, as well as the

image size and pixel depth, depend heavily on the application.

Surveillance cameras, for example, use the very low frame rate of

five fps, while HDTV displays 25 fps.

Digital video has the following important advantages:

1. It can be easily edited. This makes it possible to produce special

effects. The images of an actor in a movie can be edited to make him

look young at the beginning and old later. Software for editing

digital video is available for most computer platforms. Users can

edit a video file and attach it to an email message, thereby creating

email. Multimedia applications, where text, sound, still images, and

video are integrated, are common today and involve the editing of

video.

Lecture 1 | Zainab Ali

2

2. It can be stored on any digital medium. such as hard disks,

removable cartridges, CD-ROMs, or DVDs. An error-correcting code can

be added, if needed, for increased reliability. This makes it

possible to duplicate a long movie or transmit it between computers

without loss of quality (in fact, without a single bit getting

corrupted).

3. It can be compressed. This allows for more storage (when video

is stored on a digital medium) and also for fast transmission.

Sending compressed video between computers makes video telephony

possible, which, in turn, makes video conferencing possible.

Transmitting compressed video also makes it possible to increase the

capacity of television cables and thus add channels.

2.2 Video Compression

Video compression is based on two principles.

1- The spatial redundancy that exists in each frame.
2- The fact that most of the time, a video frame is very similar

to its immediate neighbors. This is called temporal redundancy.

A typical technique for video compression should therefore start by

encoding the first frame using a still image compression method. It

should then encode each successive frame by identifying the

differences between the frame and its predecessor, and encoding these

differences. If a frame is very different from its predecessor (as

happens with the first frame of a shot), it should be coded

independently of any other frame.

Lecture 1 | Zainab Ali

3

 A frame that is coded using its predecessor is called inter frame

(or just inter), while a frame that is coded independently is called

intra frame (or just intra).

Video compression is normally lossy. Encoding a frame !! in terms of
its predecessor !!"# introduces some distortions. As a result,

encoding the next frame !!$# in terms of (the already distorted) !!
increases the distortion. Even in lossless video compression, a frame

may lose some bits. This may happen during transmission or after a

long shelf stay. If a frame !! has lost some bits, then all the
frames following it, up to the next intra frame, are decoded

improperly, perhaps even leading to accumulated errors. This is why

intra frames should be used from time to time inside a sequence, not

just at its beginning. An intra frame is labeled I, and an inter

frame is labeled P (for predictive).

We know that an encoder should not use any information that is not

available to the decoder, but video compression is special because

of the large quantities of data involved. We usually don’t mind if

the encoder is slow, but the decoder has to be fast. A typical case

is video recorded on a hard disk or on a DVD, to be played back. The

encoder can take minutes or hours to encode the data. The decoder,

however, has to play it back at the correct frame rate (so many

frames per second), so it has to be fast. This is why a typical

video decoder works in parallel. It has several decoding circuits

working simultaneously on several frames.

A frame that is encoded based on both past and future frames is

labeled B (for bidirectional).

Lecture 1 | Zainab Ali

4

The idea of a B frame is so useful that most frames in a compressed

video presentation may be of this type. We therefore end up with a

sequence of compressed frames of the three types I, P, and B. An I

frame is decoded independently of any other frame. A P frame is

decoded using the preceding I or P frame. A B frame is decoded using

the preceding and following I or P frames. Figure 13a shows a

sequence of such frames in the order in which they are generated by

the encoder (and input by the decoder).

Fig. (13): (a) Coding Order. (b) Display Order

Lecture 1 | Zainab Ali

5

Figure 13b shows the same sequence in the order in which the frames

are output by the decoder and displayed. The frame labeled 2 should

be displayed after frame 5, so each frame should have two time

stamps, its coding time and its display time.

We start with a few intuitive video compression methods.

1- Subsampling: The encoder selects every other frame and writes it

on the compressed stream. This yields a compression factor of 2. The

decoder inputs a frame and duplicates it to create two frames.

2- Differencing: A frame is compared to its predecessor. If the

difference between them is small (just a few pixels), the encoder

encodes the pixels that are different by writing three numbers on

the compressed stream for each pixel: its image coordinates(r,c),

and the difference between the values of the pixel in the two frames.

If the difference between the frames is large, the current frame is

written on the output in raw format.

A lossy version of differencing looks at the amount of change in a

pixel. If the difference between the intensities of a pixel in the

preceding frame and in the current frame is smaller than a certain

(user controlled) threshold, the pixel is not considered different.

3-Block Differencing: This is a further improvement of differencing.

The image is divided into blocks of pixels, and each block B in the

current frame is compared with the corresponding block P in the

preceding frame. If the blocks differ by more than a certain amount,

then B is compressed by writing its image coordinates, followed by

the values of all its pixels (expressed as differences) on the

compressed stream.

Lecture 1 | Zainab Ali

6

4- Motion Compensation: Anyone who has watched movies knows that

the difference between consecutive frames is small because it is the

result of moving the scene, the camera, or both between frames. This

feature can therefore be exploited to achieve better compression.

If the encoder discovers that a part P of the preceding frame has

been rigidly moved to a different location in the current frame,

then P can be compressed by writing the following three items on the

compressed stream: its previous location, its current location, and

information identifying the boundaries of P.

In principle, such a part can have any shape. In practice, we are

limited to equal- size blocks (normally square but can also be

rectangular). The encoder scans the current frame block by block.

For each block B it searches the preceding frame for an identical

block C (if compression is to be lossless) or for a similar one (if

it can be lossy). Finding such a block, the encoder writes the

difference between its past and present locations on the output.

This difference is of the form

 ("% −#%,	"& −#&)=(∆%,	∆&)

so it is called a motion vector. Figure 13a,b shows a simple example

where the sun and trees are moved rigidly to the right (because of

camera movement) while the child moves a different distance to the

left (this is scene movement).

Lecture 1 | Zainab Ali

7

Fig. (13): Motion Compensation.

Motion compensation is effective if objects are just translated, not

scaled or rotated. Serious changes in illumination from frame to

frame also reduce the effectiveness of this method. In general,

motion compensation is lossy. The following are the main aspects of

motion compensation in detail:

a)Frame Segmentation: The current frame is divided into equal-size

nonoverlapping blocks. The blocks may be squares or rectangles. The

latter choice assumes that motion in video is mostly horizontal, so

horizontal blocks reduce the number of motion vectors without

degrading the compression ratio. The block size is important, because

large blocks reduce the chance of finding a match, and small blocks

result in many motion vectors. In practice, block sizes that are

integer powers of 2, such as 8 or 16, are used, since this simplifies

the software.

Lecture 1 | Zainab Ali

8

Search Threshold: Each block B in the current frame is first compared

to its counterpart C in the preceding frame. If they are identical,

or if the difference between them is less than a preset threshold,

the encoder assumes that the block hasn’t been moved.

Block Search: This is a time-consuming process, and so has to be

carefully designed. If B is the current block in the current frame,

then the previous frame has to be searched for a block identical to

or very close to B. The search is normally restricted to a small

area (called the search area) around B, defined by the maximum

displacement parameters dx and dy. These parameters specify the

maximum horizontal and vertical distances, in pixels, between B and

any matching block in the previous frame. If B is a square with side

b, the search area will contain (b + 2dx)(b + 2dy) pixels (Figure

14), overlapping b×b squares.

Fig. (14): Search Area

Lecture 1 | Zainab Ali

9

Distortion Measure: This is the most sensitive part of the encoder.

The distortion measure selects the best match for block B. It has

to be simple and fast, but also reliable.

The mean absolute difference (or mean absolute error) calculates the

average of the absolute differences between a pixel #!& in B and its
counterpart "!& in a candidate block C:

1
''(()	#!& −"!&)

(

&)#

(

!)#

The smallest distortion (say, for block "*) is examined. If it is
smaller than the search threshold, then Ck is selected as the match

for B. Otherwise, there is no match for B, and B has to be encoded

without motion compensation. A block in the current frame match

nothing in the preceding frame if imagine a camera panning from left

to right. New objects will enter the field of view from the right

all the time. A block on the right side of the frame may therefore

contain objects that did not exist in the previous frame.

Motion Vector Correction: Once a block C has been selected as the

best match for B, a motion vector is computed as the difference

between the upper-left corner of C and the upper-left corner of B.

Coding Motion Vectors: A large part of the current frame (perhaps

close to half of it) may be converted to motion vectors, which is

why the way these vectors are encoded is important; it must also be

lossless. Two properties of motion vectors help in encoding them:

(1) They are correlated and (2) their distribution is nonuniform.

Lecture 1 | Zainab Ali

10

2.2 MPEG Compression

Moving Pictures Experts Group (MPEG) is a method for video

compression, which involves the compression of digital images and

sound, as well as synchronization of the two. There currently are

several MPEG standards.

MPEG uses its own vocabulary. An entire movie is considered a video

sequence. It consists of pictures, each having three components, one

luminance (Y) and two chrominance (Cb and Cr).

The luminance component contains the black-and- white picture, and

the chrominance components provide the color hue and saturation.

Each component is a rectangular array of samples, and each row of

the array is called a raster line. A pel is the set of three samples.

The input to an MPEG encoder is called the source data, and the

output of an MPEG decoder is the reconstructed data. The MPEG decoder

has three main parts, called layers, to decode the audio, the video,

and the system data.

2.3.1 MPEG-1 Main Component

MPEG uses I, P, and B pictures, as discussed before. They are

arranged in groups, where a group can be open or closed. The pictures

are arranged in a certain order, called the coding order, but (after

being decoded) they are output and displayed in a different order,

called the display order. In a closed group, P and B pictures are

decoded only from other pictures in the group. In an open group,

they can be decoded from pictures outside the group. Different

regions of a B picture may use different pictures for their decoding.

Lecture 1 | Zainab Ali

11

MPEG-1 was originally developed as a compression standard for

interactive video on CDs and for digital audio broadcasting. It

turned out to be a technological succeeded but a visionary failure.

On the one hand, not a single design mistake was found during the

implementation of this complex algorithm and it worked as expected.

On the other hand, interactive CDs and digital audio broadcasting

have had little commercial success, so MPEG-1 is used today for

general video compression. One aspect of MPEG-1 that was supposed

to be minor, namely MP3, has grown out of proportion and is commonly

used today for audio . MPEG-2, on the other hand, was specifically

designed for digital television and this standard has had enormous

commercial success.

The basic building block of an MPEG picture is the macroblock (Figure

15). It consists of a 16×16 block of luminance (grayscale) samples

(divided into four 8×8 blocks) and two 8 × 8 blocks of the matching

chrominance samples. The MPEG compression of a macroblock consists

mainly in passing each of the six blocks through a discrete cosine

transform, which creates decorrelated values, then quantizing and

encoding the results. It is very similar to JPEG compression, the

main differences being that different quantization tables and

different code tables are used in MPEG for intra and nonintra, and

the rounding is done differently.

Lecture 1 | Zainab Ali

12

Fig. (15): (a) A Macroblock. (b) A Possible Slice Structure.

A picture in MPEG is organized in slices, where each slice is a

adjacent set of macroblocks (in raster order) that have the same

grayscale (i.e., luminance component). The concept of slices makes

sense because a picture may often contain large uniform areas,

causing many adjacent macroblocks to have the same grayscale. (Figure

15b) shows a hypothetical MPEG picture and how it is divided into

slices. Each square in the picture is a macroblock. Notice that a

slice can continue from scan line to scan line.

In Figure 15b consists of 18×18 macroblocks, and each macroblock

constitutes six 8×8 blocks of samples. The total number of samples

is therefore 18×18×6×8×8 = 124416.

Lecture 1 | Zainab Ali

13

When a picture is encoded in nonintra mode (i.e., it is encoded by

means of another picture, normally its predecessor), the MPEG encoder

generates the differences between the pictures, then applies the DCT

to the differences. In such a case, the DCT does not contribute much

to the compression, because the differences are already

decorrelated. Nevertheless, the DCT is useful even in this case,

since it is followed by quantization, and the quantization in

nonintra coding can be quite deep.

The precision of the numbers processed by the DCT in MPEG also

depends on whether intra or nonintra coding is used. MPEG samples

in intra coding are 8-bit unsigned integers, whereas in nonintra

they are 9-bit signed integers. This is because a sample in nonintra

is the difference of two unsigned integers, and may therefore be

negative. In intra coding, rounding is done in the normal way, to

the nearest integer, whereas in nonintra, rounding is done by

truncating a noninteger to the nearest smaller integer. (Figure 16)

shows the results graphically. Notice the wide interval around zero

in nonintra coding. This is the so-called dead zone.

Lecture 1 | Zainab Ali

14

Fig. (16):Rounding of Quantized DCT Coefficients.(a)For Intra Coding.(b) For Nonintra Coding.

2.3.2 MPEG-4

MPEG-4 is a new standard for audiovisual data. Although video and

audio compression is still a central feature of MPEG-4, this standard

includes much more than just compression of the data. As a result,

MPEG-4 is huge and this section can only describe its main features.

The MPEG-4 project started in May 1991 and initially aimed at finding

ways to compress multimedia data to very low bitrates with minimal

distortions. Many proposals were accepted for the many facets of

MPEG-4, and the first version of MPEG-4 was accepted and approved

in late 1998. The formal description was published in 1999 with many

amendments that keep coming out.

Lecture 1 | Zainab Ali

15

Traditionally, methods for compressing video have been based on

pixels. Each video frame is a rectangular set of pixels, and the

algorithm looks for correlations between pixels in a frame and

between frames. The compression paradigm adopted for MPEG-4, on the

other hand, is based on objects. (The name of the MPEG-4 project was

also changed at this point to “coding of audiovisual objects.”)

In addition to producing a movie in the traditional way with a camera

or with the help of computer animation, an individual generating a

piece of audiovisual data may start by defining objects, such as a

flower, a face, or a vehicle, and then describing how each object

should be moved and manipulated in successive frames. A flower may

open slowly, a face may turn, smile, and fade, a vehicle may move

toward the viewer and appear bigger. MPEG-4 includes an object

description language that provides for a compact description of both

objects and their movements and interactions.

An important feature of MPEG-4 is interoperability. This term refers

to the ability to exchange any type of data, be it text, graphics,

video, or audio. Obviously, interoperability is possible only in the

presence of standards. All devices that produce data, deliver it,

and consume (play, display, or print) it must obey the same rules

and read and write the same file structures.

Because of the wide goals and rich variety of tools available as

part of MPEG-4, this standard is expected to have many applications.

The ones listed here are just a few important examples.

1. Streaming multimedia data over the Internet or over local-area

networks. This is important for entertainment and education.

2. Communications, both visual and audio, between vehicles and/or

individuals. This has military and law enforcement applications.

3. Broadcasting digital multimedia. This, again, has many

entertainment and educational applications.

Lecture 1 | Zainab Ali

16

4. Context-based storage and retrieval. Audiovisual data can be

stored in compressed form and retrieved for delivery or consumption.

5. Studio and television postproduction. A movie originally produced

in English may be translated to another language by dubbing or

subtitling.

6. Surveillance. Low-quality video and audio data can be compressed

and transmitted from a surveillance camera to a central monitoring

location over an inexpensive, slow communications channel. Control

signals may be sent back to the camera through the same channel to

rotate or zoom it in order to follow the movements of a suspect.

7. Virtual conferencing. This time-saving application is the

favorite of busy executives.

2.3.3 H.261

 In late 1984, the CCITT (currently the ITU-T) organized an expert
group to develop a standard for visual telephony for ISDN services.

The idea was to send images and sound between special terminals, so

that users could talk and see each other. This type of application

requires sending large amounts of data, so compression became an

important consideration. The group eventually came up with a number

of standards, known as the H series (for video) and the G series

(for audio) recommendations, all operating at speeds of p×64

Kbit/sec for 1 ≤ p ≤ 30. These standards are summarized in Table 5.

Lecture 1 | Zainab Ali

17

Standard Purpose

H.261 Video

H.221 Communications

H.230 Initial handshake

H.320 Terminal systems

H.242 Control protocol

G.711 Companded audio (64 Kbits/s)

G.722 High quality audio (64 Kbits/s)

G.728 Speech (LD-CELP @16kbits/s)

Table 5: The p×64 Standards.

Members of the p×64 also participated in the development of MPEG,

so the two methods have many common elements. There is, however, an

important difference between them. In MPEG, the decoder must be fast,

since it may have to operate in real time, but the encoder can be

slow. This leads to very asymmetric compression, and the encoder can

be hundreds of times more complex than the decoder. In H.261, both

encoder and decoder operate in real time, so both have to be fast.

Still, the H.261 standard defines only the data stream and the

decoder. The encoder can use any method as long as it creates a

valid compressed stream. The compressed stream is organized in

layers, and macroblocks are used as in MPEG. Also, the same 8×8 DCT

and the same zigzag order as in MPEG are used. The intra DC

coefficient is quantized by always dividing it by 8, and it has no

dead zone. The inter DC and all AC coefficients are quantized with

a dead zone.

Lecture 1 | Zainab Ali

18

Motion compensation is used when pictures are predicted from other

pictures, and motion vectors are coded as differences. Blocks that

are completely zero can be skipped within a macroblock, and variable-

size codes that are very similar to those of MPEG (such as run-level

codes), or are even identical (such as motion vector codes) are

used. In all these aspects, H.261 and MPEG are very similar.

There are, however, important differences between them. H.261 uses

a single quantization coefficient instead of an 8×8 table of QCs,

and this coefficient can be changed only after 11 macroblocks. AC

coefficients that are intra coded have a dead zone. The compressed

stream has just four layers, instead of MPEG’s six. The motion

vectors are always full-pel and are limited to a range of just ±15

pels. There are no B pictures, and only the immediately preceding

picture can be used to predict a P picture.

Lecture 1 | Zainab Ali

1

3. Audio Compression

With the advent of powerful, inexpensive personal computers in the

1980s and 1990s came multimedia applications, where text, images,

movies, and sound are stored in the computer, and can be uploaded,

downloaded, displayed, edited, and played back. The storage

requirements of sound are smaller than those of images or movies,

but bigger than those of text. This is why audio compression has

become important and has been the subject of much research and

experimentation throughout the 1990s.

Two important features of audio compression are (1) it can be lossy

and (2) it requires fast decoding. Text compression must be lossless,

but images and audio can lose much data without a noticeable

degradation of quality. Thus, there are both lossless and lossy audio

compression algorithms. Often, audio is stored in compressed form

and has to be decompressed in real-time when the user wants to listen

to it. This is why most audio compression methods are asymmetric.

The encoder can be slow, but the decoder has to be fast.

The sound means: An intuitive definition: Sound is the sensation

detected by our ears and interpreted by our brain in a certain way.

A scientific definition: Sound is a physical disturbance in a medium.

It propagates in the medium as a pressure wave by the movement of

atoms or molecules.

Like any other wave, sound has three important attributes, its speed,

amplitude, and period. The frequency of a wave is not an independent

attribute; it is the number of periods that occur in one time unit

(one second). The unit of frequency is the hertz (Hz). The speed of

sound depends mostly on the medium it passes through, and on the

temperature.

Lecture 1 | Zainab Ali

2

The human ear is sensitive to a wide range of sound frequencies,

normally from about 20 Hz to about 22,000 Hz, depending on a person

’s age and health. This is the range of audible frequencies.

The amplitude of sound is also an important property. We perceive

it as loudness. The sensitivity of the human ear to sound level

depends on the frequency. Experiments indicate that people are more

sensitive to (and therefore more annoyed by) high-frequency sounds

(which is why sirens have a high pitch)

3.1 Digital Audio

Digital audio is a technology that is used to record, store,

manipulate, generate and reproduce sound using audio signals that

have been encoded in digital form.

When sound is played into a microphone, it is converted into a

voltage that varies continuously with time. Figure 18 shows a typical

example of sound that starts at zero and oscillates several times.

Such voltage is the analog representation of the sound. Digitizing

sound is done by measuring the voltage at many points in time,

translating each measurement into a number, and writing the numbers

on a file. This process is called sampling. The sound wave is

sampled, and the samples become the digitized sound. The device used

for sampling is called an analog-to-digital converter (ADC).

The difference between a sound wave and its samples can be compared

to the difference between an analog clock, where the hands seem to

move continuously, and a digital clock, where the display changes

abruptly every second.

Lecture 1 | Zainab Ali

3

Since the audio samples are numbers, they are easy to edit. However,

the main use of an audio file is to play it back. This is done by

converting the numeric samples back into voltages that are

continuously fed into a speaker. The device that does that is called

a digital-to-analog converter (DAC). Intuitively, it is clear that

a high sampling rate would result in better sound reproduction, but

also in many more samples and therefore bigger files. Thus, the main

problem in audio sampling is how often to sample a given sound.

Figure 18a shows what may happen if the sampling rate is too low.

The sound wave in the figure is sampled four times, and all four

samples happen to be identical. When these samples are used to play

back the sound, the result is silence. Figure 18b shows seven

samples, and they seem to “follow” the original wave fairly

closely. Unfortunately, when they are used to reproduce the sound,

they produce the curve shown in dashed. There simply are not enough

samples to reconstruct the original sound wave.

The solution to the sampling problem is to sample sound at a little

over the Nyquist frequency (he minimum rate at which a signal can

be sampled without introducing errors, which is twice the highest

frequency present in the signal). The range of human hearing is

typically from 16–20 Hz to 20,000–22,000 Hz. When sound is digitized

at high fidelity, it should therefore be sampled at a little over

the Nyquist rate of 2×22000 = 44000 Hz. This is why high-quality

digital sound is based on a 44,100-Hz sampling rate. Anything lower

than this rate results in distortions, while higher sampling rates

do not produce any improvement in the reconstruction of the sound.

We can consider the sampling rate of 44,100 Hz a lowpass filter,

since it effectively removes all the frequencies above 22,000 Hz.

Such a sampling rate guarantees true reproduction of the sound. This

is illustrated in Figure 18c, which shows 10 equally-spaced samples

taken over four periods. Notice that the samples can come from any

point.

https://www.google.com/search?sca_esv=421bbcb432c7b64f&sca_upv=1&rlz=1C5CHFA_enIQ1022IQ1032&sxsrf=ACQVn08HXq8KwJXFxKBMxcsMvLLEozEQEg:1713093347697&q=sampled&si=AKbGX_r0zqXEeLlZhGfi3fbO0QSWGSQ8gW8vC_oHFrtim8nguSy5hPqXzUlfgZitA1qLt8fLD1tDLb6mWSkdWtGoE_6_xsejDw%3D%3D&expnd=1&sa=X&ved=2ahUKEwjHg9ODysGFAxWdS_EDHbQuAaMQyecJegQIEhAP

Lecture 1 | Zainab Ali

4

Fig (18):	Sampling a Sound Wave

The second problem in sound sampling is the sample size. Each sample

becomes a number, but how large should this number be? In practice,

samples are normally either 8 or 16 bits, although some high-quality

sound cards that are available for many computer platforms may

optionally use 32-bit samples. Assuming that the highest voltage in

a sound wave is 1 volt, an 8-bit sample can distinguish voltages as

low as 1/256 ≈ 0.004 volt, or 4 millivolts (mv). A quiet sound,

generating a wave lower than 4 mv, would be sampled as zero and

played back as silence.

Lecture 1 | Zainab Ali

5

 In contrast, with a 16-bit sample it is possible to distinguish

sounds as low as 1/65536 ≈ 15 microvolt. We can think of the sample

size as a quantization of the original audio data. Eight-bit samples

are more coarsely quantized than 16-bit samples. As a result, they

produce better compression but poorer audio reconstruction. Suppose

that the sample size is one bit. Each sample has a value of either

0 or 1. We hear when these samples are played back each 0 would

result in silence and each sample of 1, in the same tone. The result

would be a nonuniform buzz. Such sounds were common on early personal

computers.

3.2 Conventional Audio Compression Methods

Conventional compression methods, such as RLE, statistical, and

dictionary-based, can be used to losslessly compress sound files,

but the results depend heavily on the specific sound. Some sounds

may compress well under RLE but not under a statistical method.

Other sounds may lend themselves to statistical compression but may

expand when processed by a dictionary method. Here is how sounds

respond to each of the three classes of compression methods.

RLE may work well when the sound contains long runs of identical

samples. With 8-bit samples this may be common. Recall that the

difference between the two 8-bit samples n and n + 1 is about 4 mv.

A few seconds of uniform music, where the wave does not oscillate

more than 4 mv, may produce a run of thousands of identical samples.

With 16-bit samples, long runs may be rare and RLE, consequently,

ineffective.

Lecture 1 | Zainab Ali

6

Statistical methods assign variable-size codes to the samples

according to their frequency of occurrence. With 8-bit samples, there

are only 256 different samples, so in a large audio file, the samples

may sometimes have a flat distribution. Such a file will therefore

not respond well to Huffman coding. With 16-bit samples there are

more than 65,000 possible samples, so they may sometimes feature

skewed probabilities (i.e., some samples may occur very often, while

others may be rare). Such a file may therefore compress better with

arithmetic coding.

Dictionary-based methods expect to find the same phrases again and

again in the data. This happens with text, where certain strings may

repeat often. Sound, however, is an analog signal and the particular

samples generated depend on the precise way the ADC works. Signals

may become samples of different sizes. This is why parts of speech

that sound the same to us, and should therefore have become identical

phrases, end up being digitized slightly differently, and go into

the dictionary as different phrases, thereby reducing compression.

Dictionary-based methods are not well suited for sound compression.

3.3 Lossy Sound Compression

It is possible to get better sound compression by developing lossy

methods that take advantage of our perception of sound, and discard

data to which the human ear is not sensitive. This is similar to

lossy image compression, where data to which the human eye is not

sensitive is discarded. In both cases we use the fact that the

original information (image or sound) is analog and has already lost

some quality when digitized. Losing some more data, if done

carefully, may not significantly affect the played-back sound, and

may therefore be indistinguishable from the original. We briefly

describe two approaches, silence compression and companding.

Lecture 1 | Zainab Ali

7

The principle of silence compression is to treat small samples as

if they were silence (i.e., as samples of 0). This generates run

lengths of zero, so silence compression is actually a variant of

RLE, suitable for sound compression. This method uses the fact that

some people have less sensitive hearing than others, and will

tolerate the loss of sound that is so quiet they may not hear it

anyway. Audio files containing long periods of low-volume sound will

respond to silence compression better than other files with high-

volume sound. This method requires a user-controlled parameter that

specifies the largest sample that should be terminate. Two other

parameters are also necessary, although they may not have to be

user-controlled. One specifies the shortest run length of small

samples, typically 2 or 3. The other specifies the minimum number

of consecutive large samples that should terminate a run of silence.

For example, a run of 15 small samples, followed by two large

samples, followed by 13 small samples may be considered one silence

run of 30 samples, whereas the runs 15, 2, 13 may become two distinct

silence runs of 15 and 13 samples, with nonsilence in between.

Companding (short for “compressing/expanding”) uses the fact that

the ear requires more precise samples at low amplitudes (soft

sounds), but is more forgiving at higher amplitudes. A typical ADC

used in sound cards for personal computers converts voltages to

numbers linearly. If an amplitude a is converted to the number n,

then amplitude 2a will be converted to the number 2n. A compression

method using companding examines every sample in the sound file, and

employs a nonlinear formula to reduce the number of bits devoted to

it. For 16-bit samples, for example, a companding encoder may use a

formula as simple as

!"##$% = 32767(2
!"#$%&
'(()' -1) Eq.(3.1)

Lecture 1 | Zainab Ali

8

to reduce each sample. This formula maps the 16-bit samples

nonlinearly to 15-bit numbers (i.e., numbers in the range [0, 32767])

such that small samples are less affected than large ones. Table 6

illustrates the nonlinearity of this mapping. It shows eight pairs

of samples, where the two samples in each pair differ by 100. The

two samples of the first pair get mapped to numbers that differ by

34, whereas the two samples of the last pair are mapped to numbers

that differ by 65. The mapped 15-bit numbers can be decoded back

into the original 16-bit samples by the inverse formula

,"!#-$ = 65536 ∗ -01!(1 + "#$$%&'
(!)*)) Eq.(3.2)

sample mapping diff sample mapping diff

100 35 34 30000 12236 47

200 69 30100 12283

1000 348 35 40000 17256 53

1100 383 40100 17309

10000 3656 38 50000 22837 59

10100 3694 50100 22896

20000 7719 43 60000 29040 65

20100 7762 60100 29105

Table 6: 16-Bit sample Mapped to 15-Bit Numbers

Reducing 16-bit numbers to 15 bits doesn’t produce much compression.

Better compression can be achieved by substituting a smaller number

for 32,767 in equations (3.1) and (3.2). A value of 127, for example,

would map each 16-bit sample into an 8-bit one using 127 instead

32767, yielding a compression ratio of 0.5. However, decoding would

be less accurate. A 16-bit sample of 60,100, for example, would be

mapped into the 8-bit number 113, but this number would produce

60,172 when decoded by Equation (3.2). Even worse, the small 16-bit

sample 1000 would be mapped into 1.35, which has to be rounded to

number 1. When Equation (3.2) is used to decode a 1, it produces

742, significantly different from the original sample.

Lecture 1 | Zainab Ali

9

Companding is not limited to Equations (3.1) and (3.2). More

sophisticated methods, such as μ-law and A-law, are commonly used

and have been designated international standards.

3.4 μ-Law and A-Law Companding

μ-Law and A-Law Companding international standard known as G.711.

They employ logarithm-based functions to encode audio samples for

ISDN (integrated services digital network) digital telephony

services, by means of nonlinear quantization. The ISDN hardware

samples the voice signal from the telephone 8,000 times per second,

and generates 14-bit samples (13 for A-law). The method of μ-law

companding is used in North America and Japan, and A-law is used

elsewhere. The two methods are similar; they differ mostly in their

quantization’s.

The low amplitudes of speech signals contain more information than

the high amplitudes. This is why use nonlinear quantization. Imagine

an audio signal sent on a telephone line and digitized to 14-bit

samples. The louder the conversation, the higher the amplitude, and

the bigger the value of the sample. Since high amplitudes are less

important, they can be coarsely quantized. If the largest sample,

which is 2+, − 1 = 16,383, is quantized to 255 (the largest 8-bit
number), then the compression factor is 14/8 = 1.75. When decoded,

a code of 255 will become very different from the original 16,383.

We say that because of the coarse quantization, large samples end

up with high quantization noise. Smaller samples should be finely

quantized, so they end up with low quantization noise.

The μ-law encoder inputs 14-bit samples and outputs 8-bit codewords.

The A- law inputs 13-bit samples and also outputs 8-bit codewords.

The telephone signals are sampled at 8 kHz (8,000 times per second),

so the μ-law encoder receives 8,000×14 = 112,000 bits/sec. At a

Lecture 1 | Zainab Ali

10

compression factor of 1.75, the encoder outputs(112000/1.75=64,000

bits/sec).

Logarithms are slow to compute, so the μ-law encoder performs much

simpler calculations that produce an approximation. The output

specified by the G.711 standard is an 8-bit codeword whose format

is shown in Figure 19.

P S2 S1 S0 Q3 Q2 Q1 Q0
Fig. (19): G.711 μ-Law Codeword	

 Q3 Q2 Q1 Q0

0 0 0 1 0 1 0 1 1 0 0 0 1
12 11 10 9 8 7 6 5 4 3 2 1 0

Fig. (20): Encoding input sample -656

Bit P in Figure 19 is the sign bit of the output (same as the sign

bit of the 14-bit signed input sample). Bits S2, S1, and S0 are the

segment code, and bits Q3 through Q0 are the quantization code. The

encoder determines the segment code by

(1) adding a bias of 33 to the absolute value of the input sample.

(2) determining the bit position of the most significant 1-bit among

bits 5 through 12 of the input.

(3) subtracting 5 from that position. The 4-bit quantization code

is set to the four bits following the bit position determined in

step 2. The encoder ignores the remaining bits of the input sample,

and it inverts (1’s complements) the codeword before it is output.

We use the input sample −656 as an example. The sample is negative,

so bit P becomes 1. Adding 33 to the absolute value of the input

yields 689 = 0001010110001! (Figure 20). The most significant 1-
bit in positions 5 through 12 is found at position 9.

Lecture 1 | Zainab Ali

11

The segment code is thus 9 − 5 = 4. The quantization code is the

four bits 0101 at positions 8–5, and the remaining five bits 10001

are ignored. The 8-bit codeword (which is later inverted) becomes

P S2 S1 S0 Q3 Q2 Q1 Q0

1 1 0 0 0 1 0 1

The μ-law decoder inputs an 8-bit codeword and inverts it. It then

decodes it as follows:

1. Multiply the quantization code by 2 and add 33 (the bias) to the

result.

2. Multiply the result by 2 raised to the power of the segment code.

3.Decrement the result by the bias.

4. Use bit P to determine the sign of the result.

Applying these steps to our example produces

1.The quantization code is 101! =5, so 5×2+33=43.

2.The segment code is 100! =4,so 43× 2, =688.

3.Decrement by the bias 688 − 33 = 655.

4. Bit P is 1, so the final result is −655. Thus, the quantization

error (the noise) is 1; very small.

