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• RISC and CISC 

• I/O Organization and Peripheral Control Strategies. 

• I/O Interfaces and Programming 

• Asynchronous data transfer 

➢ Memory Management. 
• Memory types and Hierarchy 

• Main Memory address map. 

• Associative Memory and Content Addressable Memories. 

➢ Parallel Processing 
• Pipeline (general consideration). 

• Arithmetic Pipeline. 

• Instruction Pipeline. 

• Difficulties and Solutions in Instruction Pipeline. 

• Vector processing and Array Processing. 

 
1. Introduction 
     Computer architecture is the organization of the components which make up a computer system and 

the meaning of the operations which guide its function. It defines what is seen on the machine interface, 

which is targeted by programming languages and their compilers. 

Q1: \ What is computer architecture? 
Computer architecture can be defined as a set of rules and methods that describe the functionality, 

management and implementation of computers. To be precise, it is nothing but rules by which a system performs 

and operates. 

Computer Architecture can be divided into mainly three categories, which are as follows − 

 Instruction set Architecture or ISA − Whenever an instruction is given to processor, its role is to read 

and act accordingly. It allocates memory to instructions and also acts upon memory address mode (Direct 

Addressing mode or Indirect Addressing mode). 

 Micro Architecture − It describes how a particular processor will handle and implement instructions 

from ISA. 

 System design − It includes the other entire hardware component within the system such as 

virtualization, multiprocessing. 
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Role of computer Architecture 

The main role of Computer Architecture is to balance the performance, efficiency, cost and reliability of a 

computer system. 

For Example − Instruction set architecture (ISA) acts as a bridge between computer's software and hardware. 

It works as a programmer's view of a machine. 

Computers can only understand binary language (i.e., 0, 1) and users understand high level language (i.e., if 

else, while, conditions, etc). So to communicate between user and computer, Instruction set Architecture plays 

a major role here, translating high level language to binary language. 

 Structure Computer Architecture 

Example structure of Computer Architecture as given below. Generally, computer architecture consists of 

the following − 

 Processor 

 Memory 

 Peripherals 

All the above parts are connected with the help of system bus, which consists of address bus, data bus and 

control bus. 

The diagram given below depicts the computer architecture − 
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1.1.  RISC and CISC Architecture 
      Means classification of instructions set to categories to increase the performance of 

Computer (Classification Instruction Set According Languages program)   

1. Reduced Instruction Set Computer (RISC)  

An important aspect of computer architecture is the design of the instruction set for the 

processor. The instruction set chosen for a particular computer determines the way that machine 

language programs are constructed. A computer with a large number of instructions is classified 

as a complex instruction set computer, abbreviated CISC. In the early 1980s, a  

Reduced Instruction Set Computer or RISC Architecture 

The fundamental goal of RISC is to make hardware simpler by employing an instruction set that 

consists of only a few basic steps used for evaluating, loading, and storing operations. A load command loads 

data but a store command stores data. 

Characteristics of RISC: 

1. It has simpler instructions and thus simple instruction decoding. 

2. More general-purpose registers. 

3. The instruction takes one clock cycle in order to get executed. 

4. The instruction comes under the size of a single word. 

5. Pipeline can be easily achieved. 

6. Few data types. 

7. Simpler addressing modes. 

 

2. Complex Instruction Set Computer or CISC Architecture 

 
The fundamental goal of CISC is that a single instruction will handle all evaluating, loading, and 

storing operations, similar to how a multiplication command will handle evaluating, loading, and storing data, 

which is why it’s complicated. 

Characteristics of CISC: 

1. Instructions are complex, and thus it has complex instruction decoding. 

2. The instructions may take more than one clock cycle in order to get executed. 

3. The instruction is larger than one-word size. 

4. Lesser general-purpose registers since the operations get performed only in the memory. 

5. More data types. 

6. Complex addressing modes. 

 

Both CISC and RISC approaches primarily try to increase the performance of a CPU. Here is how both of 

these work: 
1. CISC: This kind of approach tries to minimize the total number of instructions per program, and it does so at the 
cost of increasing the total number of cycles per instruction. 
2. RISC: It reduces the cycles per instruction and does so at the cost of the total number of instructions per 
program. 



8  

  

When 

programming was done in assembly language earlier, there was a desire to make the instructions perform more 

tasks. It is because assembly programming was arduous (شاق) and error-prone (معرض للخطأ) and led to the 

evolution of CISC architecture. But as the dependency of high-level language on assembly language 

decreased, RISC architecture prevailed ( دئساال هو ). 

Example 

Suppose we need to add two different 8-bit numbers: 

1. CISC approach: There would be a single instruction or command for this, such as ADD, that would 

perform the task. 

2. RISC approach: In this case, the programmer would write the very first load command in order to load 

data in the registers. Then it would use a suitable operator and store the obtained result in the location that is 

desired. 

The add operation here is divided into parts, namely, operate, load, and store. Due to this, RISC 

programs are much longer, and they require more memory to get stored, even though they require fewer 

transistors because the commands are less complex. 

 

 

 

Q1: \ What is combinational circuit? 
In digital electronics, a combinational circuit is a circuit in which the output depends on the present 

combination of inputs. Combinational circuits are made up of logic gates. The output of each logic gate is 

determined by its logic function. 

 

Q2: What is difference between combinational and sequential circuit? 

1. combinational circuit is time-independent. The output it generates does not depend on any of its 

previous inputs.  

2. sequential circuits are the ones that depend on clock cycles. They depend entirely on the past as well 

as the present inputs for generating output. 
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Unlike Sequential Logic Circuits whose outputs are dependent on both their present inputs and 

their previous output state giving them some form of Memory.  

The outputs of Combinational Logic Circuits are only determined by the logical 

function of their current input state, logic “0” or logic “1”, at any given instant in time. 

 

Q4: \ You have Three digital inputs (A, B, C) and output (Q), Design Combinational Logic Circuits (your 

Answer should appear (Logical diagram, Boolean Expression and Typical truth table)? 

Solution 

Combinational Logic Circuits 

Combinational Logic Circuits are 

memoryless digital logic circuits 

whose output at any instant in time 

depends only on the combination of 

its inputs. 
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Q1: \ What are the differences between Combinational circuitry and State circuitry? 

solution 
1. Combinational circuitry behaves like a simple function. The output of combinational circuitry depends 

only on the current values of its input.  

2. State circuitry behaves more like an object method. The output of state circuitry does not just depend 

on its inputs — it also depends on the past history of its inputs. 

 

Q2: \What is the Difference Between Half Adder and Full Adder? 

Solution  

There is a primary difference between half adder and full adder. Half adder only adds the current inputs as 1-bit 

numbers and does not focus on the previous inputs. On the other hand, Full Adder can easily carry the current 

inputs as well as the output from the previous additions. 

 

What is a Half Adder? 

It is a combinational logic circuit. You can design it by connecting one AND gate and one EX-OR gate. 

A half-adder circuit consists of two input terminals- namely A and B. Both of these add two input digits (one-

bit numbers) and generate the output in the form of a carry and a sum. Thus, there are two output terminals. 

The output that one obtains from the EX-OR gate is the sum of both the one-bit numbers. The output 

obtained from the AND gate is called the carry. But you cannot forward the carry that you obtain in one addition 

into another addition. It is because of the absence of any logic gate to process it. Thus, it’s called the Half Adder 

circuit. 

We can write the equation of output for both the gates in the form of a logical operation that the logic gates 

perform. Here, we write the carry equation in the form of AND operation and the sum equation in the form of 

EX-OR operation. 

Logical Expression of Half Adder 

Sum (S) = A ⊕ B 

Carry (C) = A.B 
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What is Full Adder? 

A full adder is a circuit that has two AND gates, two EX-OR gates, and one OR gate. The full adder adds 

three binary digits. Among all the three, one is the carry that we obtain from the previous addition as C-IN, and 

the two are inputs A and B. It designates the input carry as the C-OUT and the normal output as S (or SUM). 

Just like the Half Adder, the Full Ladder is a combinational type of logic circuit- meaning, it has no 

storage element. But it has additional logic gates. Thus, it adds the previous carry to generate the complete 

output. Thus, it is called the Full Adder. 

One can also designate a Full Adder using one OR gate and two Half Adders. The OR gate here generates 

a carry that it obtains after the addition. We obtain the sum of these digits in the form of output from the second 

Half Adder. 

The equation for the output that you can obtain by the EX-OR gate is the sum of all the binary digits. Here, the 

output that you obtain from the AND gate is the carry that you obtain by addition. This equation is in the form 

of a logical operation. 

Logical Expression of Full Adder 

CARRY-OUT = AB + BCin ⊕ ACin 

SUM = (A ⊕ B) ⊕ Cin 
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Q:\What are the main difference between Half Adder and Full Adder?  
Solution 

 

 

Q6: What Means by multiplexer?  

Multiplexing is the generic term used to describe the operation of sending one or more analogue or digital 

signals over a common transmission line at different times or speeds and as such, the device we use to do just 

that is called the multiplexer. 

The multiplexer, shortened to “MUX” or “MPX”, is a combinational logic circuit designed to switch one of 

several input lines through to a single common output line by the application of a control signal. Multiplexers 

operate like very fast acting multiple position rotary switches connecting or controlling multiple input lines 

called “channels” one at a time to the output. 

 

A. Basic multiplexing Switch  
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B. 2- multiplexing Switch 

 

Q7: What Means by Demultiplexer 

 

The data distributor, known more commonly as the demultiplexer or “Demux” for short, is the exact opposite 

of the Multiplexer we saw in the previous tutorial. 

The demultiplexer takes one single input data line and then switches it to any one of a number of individual 

output lines one at a time. The demultiplexer converts a serial data signal at the input to a parallel data at its 

output lines as shown below. 
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1-to-4 Channel De-multiplexer 

 

 
 

The Boolean expression for this 1-to-4 Demultiplexer above with outputs A to D and data select lines a, b is 

given as: 
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Q8: What Means by Priority Encoder 

 
Unlike a multiplexer that selects one individual data input line and then sends that data to a single output line 

or switch. The job of a priority encoder is to produce a binary output address for the input with the highest 

priority. 

The Digital Encoder more commonly called a Binary Encoder takes ALL its data inputs one at a time and 

then converts them into a single encoded output. So we can say that a binary encoder, is a multi-input 

combinational logic circuit that converts the logic level “1” data at its inputs into an equivalent binary code at 

its output. 

Generally, digital encoders produce outputs of 2-bit, 3-bit or 4-bit codes depending upon the number of data 

input lines. An “n-bit” binary encoder has 2n input lines and n-bit output lines with common types that include 

4-to-2, 8-to-3 and 16-to-4 line configurations. 

 

 

 

Example: 
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Q9: What Means by Binary Decoder? 

 

The term “Decoder” means to translate or decode coded information from one format into another, so a binary 

decoder transforms “n” binary input signals into an equivalent code using 2n outputs. 

Binary Decoders are another type of digital logic device that has inputs of 2-bit, 3-bit or 4-bit codes depending 

upon the number of data input lines, so a decoder that has a set of two or more bits will be defined as having 

an n-bit code, and therefore it will be possible to represent 2n possible values. Thus, a decoder generally decodes 

a binary value into a non-binary one by setting exactly one of its n outputs to logic “1”. 

 

 

 

Example: A 2-to-4 Binary Decoders 
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Q10: What Means by Binary Adder? 

 

Another common and very useful combinational logic circuit which can be constructed using just a few basic 

logic gates allowing it to add together two or more binary numbers is the Binary Adder. 

A basic Binary Adder circuit can be made from standard AND and Ex-OR gates allowing us to “add” together 

two single bit binary numbers, A and B. 

The addition of these two digits produces an output called the SUM of the addition and a second output called 

the CARRY or Carry-out, (COUT) bit according to the rules for binary addition. One of the main uses for 

the Binary Adder is in arithmetic and counting circuits. Consider the simple addition of the two denary (base 

10) numbers and Binary Addition of two bits below. 

 

 

Q11: What Means by Binary Subtractor? 

The Binary Subtractor is another type of combinational arithmetic circuit that produces an output which is the 

subtraction of two binary numbers. 

As their name implies, a Binary Subtractor is a decision making circuit that subtracts two binary numbers 

from each other, for example, X – Y to find the resulting difference between the two numbers. 

Unlike the Binary Adder which produces a SUM and a CARRY bit when two binary numbers are added 

together, the binary subtractor produces a DIFFERENCE, D by using a BORROW bit, B from the previous 

column. Then obviously, the operation of subtraction is the opposite to that of addition 
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COMPUTER ARCHITECTURE  

Digital Computer  

The digital computer is a digital system that performs various computational tasks. Digital 

computers use the binary number system, which has two digits:  0 and 1. A binary digit is called 

a bit. Information is represented in digital computers in groups of bits. By using various coding 

techniques, groups of bits can be made to represent not only binary numbers but also other 

discrete symbols, such as decimal digits or letters of the alphabet. By judicious use of binary 

arrangements and by using various coding techniques, the groups of bits are used to develop 

complete sets of instructions for performing various types of computations.  

A computer system is sometimes subdivided into two functional entities  

1- The hardware of the computer consists of all the electronic components and 

electromechanical devices that comprise the physical entity of the device.  

2- Computer software consists of the instructions and data that the computer manipulates to 

perform various data-processing tasks.  

The system software of a computer consists of a collection of programs whose purpose is to 

make more effective use of the computer. The programs included in a systems software package 

are referred to as the   operating system.  

  

Computer Hardware  

The hardware of the computer is usually divided into three major parts, as shown in Fig(1):  
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 The central processing unit (CPU) contains arithmetic and logic unit for manipulating 

data, a number of registers for storing data, and control circuits for fetching and executing 

instructions. The memory of a computer contains storage for instructions and data. It is called a 

random- access memory (RAM) because the CPU can access any location in memory at random 

and retrieve the binary information within a fixed interval of time. The input and output 

processor (IOP) contains electronic circuits for communicating and controlling the transfer of 

information between the computer and the outside world. The input and output devices 

connected to the computer include keyboards, printers, terminals, magnetic disk drives, and 

other communication devices.  

  

Computer Organization  

Computer organization is concerned with the way the hardware components operate and 

the way they are connected together to form the computer system. The various components are 

assumed to be in place and the task is to investigate the organizational structure to verify that 

the computer parts operate as intended.  

  

Computer Design  

Computer design is concerned with the hardware design of the computer.  Once the 

computer specifications are formulated, it is the task of the designer to develop hardware for the 

system. Computer design is concerned with the determination of what hardware should be used 

and how the parts should be connected. This aspect of computer hardware is sometimes referred 

to as computer implementation.  

  

Computer Architecture  

Computer architecture is concerned with the structure and behavior of the computer as 

seen by the user. It includes the information formats, the instruction set, and techniques for 

addressing memory. The architectural design of a computer system is concerned with the 
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specifications of the various functional modules, such as processors and memories, and 

structuring them together into a computer system.  

  

Instruction Set Architecture  

 

1. Opcodes: Consists of operate instructions: as logical and arithmetical instructions, 
Data movement instructions and Control instructions  

2. Data types: consists of 8, 16, 32, and 64 bits  
3. Addressing modes: consists of: 

- Operands specified  

- Next instruction to execute is specified  

- Architecture-specific  

- An instruction can use several addressing modes  

                     

Register Transfer Language  

Digital systems vary in size and complexity from a few integrated circuits to a complex of 

interconnected and interacting digital computers. Digital system design invariably uses a 

modular approach(نهج معياري او نهج نمطي). The modules are constructed from such digital 

components as registers, decoders, arithmetic elements, and control logic. The various 

modules are interconnected with common data and control paths to form a digital computer 

system.  

Digital modules are best defined by the registers they contain and the operations that are 

performed on the data stored in them. The operations executed on data stored in registers are 

called micro operations(MO).  

A micro operation is an elementary operation (عملية ابتدائية) performed on the information 

stored in one or more registers. The result of the operation may replace the previous binary 

information of a register or may be transferred to another register. Examples of micro 

operations are shift, count, dear, and load.  

The internal hardware organization of a digital computer is best defined by specifying:  

1- The set of registers it contains and their function.  

2- The sequence of micro operations performed on the binary information stored in the 

registers.   

3- The control that initiates the sequence of micro operations.  

 

The symbolic notation used to describe the micro operation transfers among registers is 

called a register transfer language.  

  The term "register transfer" implies the availability of hardware logic circuits that can 

perform a stated micro operation and transfer the result of the operation to the same or another 

register.       
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The word "language" is borrowed from programmers, who apply this term to 

programming languages.   

A register transfer language is a system for expressing in symbolic form the micro operation 

sequences among the registers of a digital module.  

  

Register Transfer  

Computer registers are designated (يعين) by capital letters (sometimes followed by 

numerals) to denote the function of the register.  

For example:  

MAR: memory address register  

PC: program counter  

IR: instruction register  

R1: processor register  

The representation of registers in block diagram form is shown in Fig(2):  

                       
a- Rectangular box with the name of the register inside. 

b- The individual bits. 

c- The numbering of bits in a 16-bit register can be marked on top of the box. d- 16-bit 

register is partitioned into two parts. Bits 0 through 7 are assigned the symbol L (for low 

byte) and bits 8 through 15 are assigned the symbol H (for high byte).  

d- The name of the 16-bit register is PC. The symbol PC (0-7) or PC(L) refers to the low-

order byte and PC (8-15) or PC(H) to the high-order byte.  Information transfer from 

one register to another is designated in symbolic form by means of a replacement 

operator. The statement:  

𝑅2 ← 𝑅1  
Denotes a transfer of the content of register Rl into register R2. It designates a replacement 

of the content of R2 by the content of Rl. By definition, the content of the source register Rl 

does not change after the transfer.  

  

If we want the transfer to occur only under a predetermined control condition. This can 

be shown by means of an if-then statement.   

                                          𝐼𝑓 (𝑃 = 1) 𝑡ℎ𝑒𝑛 (𝑅2 ← 𝑅1)   

where P is a control signal generated in the control section. It is sometimes convenient  
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to separate the control variables from the register transfer operation control function by 

specifying a control function. (من الملائم أحياناً فصل متغيرات التحكم عن وظيفة التحكم في عملية نقل السجل من خلال تحديد وظيفة التحكم.) 

𝑃: 𝑅2 ← 𝑅1  

The control condition is terminated with a colon. It symbolizes  ()يرمز  the requirement that the 

transfer operation be executed by the hardware only if P = 1.  

  

                                        

  

To separate two or more operations that is executed at the same time by using the comma as 

the statement:  

𝑇: 𝑅2 ← 𝑅1, 𝑅5 ← 𝑅3  
  

The basic symbols of the register transfer notation are listed in Table (1) Registers are 

denoted by capital letters, and numerals may follow the letters.  Parentheses are used to denote 

a part of a register by specifying the range of bits or by giving a symbol name to a portion of a 

register.  
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Bus and Memory Transfers  

A typical digital computer has many registers, and paths must be provided to transfer 

information from one register to another. The number of wires will be excessive (مُبَالغَ فيه) if 

separate lines are used between each register and all other registers in the system.  

A bus structure consists of a set of common lines, one for each bit of a register, through 

which binary information is transferred one at a time. Control signals determine which register 

is selected by the bus during each particular register transfer. The multiplexers select the source 

register whose binary information is then placed on the bus. For example, the construction of a 

bus system for four registers is shown in Fig (3) Each register has four bits, numbered 0 through 

3. The bus consists of four 4x1(4-input-one output) multiplexers each having four data inputs, 0 

through 3, and two selection inputs, S1 and S0. (00,01,10,11) 

  
 

The table (2) shows the register that is selected by the bus for each of the four possible 

binary values of the selection lines.  

  
The symbolic statement for a bus transfer may mention the bus or its presence may be 

implied in the statement. When the bus is including in the statement, the register transfer is 

symbolized as follows:  
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 𝐵𝑢𝑠 ← 𝐶 , 𝑅1 ← 𝐵𝑢𝑠  
The content of register C is placed on the bus, and the content of the bus is loaded into 

register Rl by activating its load control input. If the bus is known to exist in the system, it may 

be convenient just to show the direct transfer.   

𝑅1 ← 𝐶  
A bus system can be constructed with three-state gates. The graphic symbol of a three 

state buffer gate is shown:  

  

To construct a common bus for four registers of n bits each using three-state buffers, we need n 

circuits with four buffers in each as shown in Fig (4). Each group of four buffers receives one 

significant bit from the four registers.  

  
 

The transfer of information from a memory word to the outside environment is called a 

read operation. The transfer of new information to be stored into the memory is called a write 

operation. Consider a memory unit that receives the address from a register, called the Address 

Register, symbolized by AR. The data are transferred to another register, called the Data 

Register, symbolized by DR.  

𝑅𝑒𝑎𝑑: 𝐷𝑅 ← 𝑀[𝐴𝑅]  
The write operation transfers the content of a data register to a memory word M selected by the 

address.  

𝑊𝑟𝑖𝑡𝑒: 𝑀[𝐴𝑅] ← 𝐷𝑅  
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Arithmetic Microoperations  

  The arithmetic operations are listed in the Table(3):  

  
 

The multiply and divide are not listed in Table (3), these two operations are valid 

arithmetic operations but are not included in the basic set of micro operations. In most 

computers, the multiplication operation is implemented with a sequence of add and shift micro 

operations. Division is implemented with a sequence of subtract and shift micro operations.  

The digital circuit that generates the arithmetic sum of two binary numbers of any length is called 

a binary adder as shown in Fig (5).  

  
 

The addition and subtraction operations can be combined into one common circuit by including 

an exclusive-OR gate with each full-adder as shown in Fig (6).  
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The increment micro operation adds one to a number in a register. For example, if a 4-bit register 

has a binary value 0110, it will go to 0111 after it is incremented. The diagram of a 4bit 

combinational circuit incremented is shown in Fig(7): (HA means Half Adder) 

  
 

The arithmetic micro operations listed in the Table 3 can be implemented in one composite 

arithmetic circuit. The basic component of an arithmetic circuit is the parallel adder. By 

controlling the data inputs to the adder, it is possible to obtain different types of arithmetic 

operations as shown in Fig (8).  
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It is possible to generate the eight arithmetic micro operations listed in Table (4):  
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Logic Micro Operations  

Logic micro operations specify binary operations for strings of bits stored in registers. 

These operations consider each bit of the register separately and treat them as binary variables. 

For example, the exclusive-OR micro operation with the contents of two registers Rl and R2 is 

symbolized by the statement:  

𝑃: 𝑅1 ← 𝑅1 ⊕ 𝑅2  
It specifies a logic micro operation to be executed on the individual bits of the registers provided 

that the control variable P = 1. As a numerical example, assume that each register has four bits. 

Let the content of Rl be 1010 and the content of R2 be 1100. The exclusive-OR micro operation 

stated above symbolizes the following logic computation:  

  
There are 16 different logic operations that can be performed with two binary variables. They 

can be determined from all possible truth tables obtained with two binary variables as shown in 

Table (5):  

  
The 16 Boolean functions of two variables x and y are expressed in algebraic form in the first 

column of Table (6):  
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The diagram shows (Fig 9-a) one typical stage with subscript i. For a logic circuit with n bits, 

the diagram must be repeated n times for i = 0,1, 2,..., n - 1. The selection variables are applied 

to all stages. The function table in Fig.(9-b) lists the logic micro operations obtained for each 

combination of the selection variables.  

  
  

Shift Micro operations  

Shift micro operations are used for serial transfer of data. The contents of a register can 

be shifted to the left or the right. There are three types of shifts: logical, circular, and arithmetic. 
The symbolic notation for the shift micro operations is shown in Table (7):  

  
An arithmetic shift is a micro operation that shifts a signed binary number to the left or 

right. The arithmetic shift-left inserts a 0 into R0, and shifts all other bits to the left. The initial 

bit of Rn-1 is lost and replaced by the bit from Rn-2 . A sign reversal occurs if the bit in Rn-1 

changes in value after the shift and caused an overflow.   

The arithmetic shift-right leaves the sign bit unchanged and shifts the number (including the sign 

bit) to the right.   
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Ex: If the content of 8 bits register is (10100011). What is the result of the operation after 

executing to the register:  

a. shl R: shift  left register by 3.             b. cil R : circular shift left register by 3.                        

c.  ashl R: arithmetic shift  left register by 3.   d. ashr R: arithmetic shift  right register by 3.  

Ans:  

(a) 00011000.      (b) 00011101.      (c) 00011000. Overflow       (d) 11110100  

  

A combinational circuit shifter can be constructed with multiplexers as shown in Fig (10). 

The 4-bit shifter has four data inputs, A0 through A3, and four data outputs, H0 through H3. There 

are two serial inputs, one for shift left (IL) and the other for shift right (IR).  

  
  

Arithmetic Logic Shift Unit  

Computer systems employ a number of storage registers connected to a common 

operational unit called an arithmetic logic unit, abbreviated ALU. The arithmetic, logic, and shift 

circuits introduced in previous sections can be combined into one ALU with common selection 

variables. One stage of an arithmetic logic shift unit is shown in Fig (11) with the functional 

table(8):  
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The way that the interrupt is handled by the computer can be explained by means of the flowchart 

of Fig(19). An interrupt flip-flop R is included in the computer.  

  

Design of Basic Computer  

The basic computer consists of the following hardware components:   

1. A memory unit with 4096 words of 16 bits each   

2. Nine registers: AR, PC, DR, AC, IR, TR, OUTR, INPR, and SC   

3. Seven flip-flops: I, S, E, R, IEN, FGI, and FGO   

4. Two decoders: a 3 x 8 operation decoder and a 4 x 16 timing decoder   

5. A 16-bit common bus   

6. Control logic gates   

7. Adder and logic circuit connected to the input of AC The outputs of the control logic circuit 

are:   

1. Signals to control the inputs of the nine registers   

2. Signals to control the read and write inputs of memory   

3. Signals to set, clear, or complement the flip-flops   

4. Signals for S2, S1, and S0 to select a register for the bus   

5. Signals to control the AC adder and logic circuit.  
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Design of Accumulator Logic  

The circuits associated with the AC register are shown in Fig(20). The adder and logic 

circuit has three sets of inputs.  

  

In order to design the logic associated with AC, it is necessary to go over the register transfer 

statements and extract all the statements that change the content of AC.  

  

Control Memory  

The function of the control unit in a digital computer is to initiate sequences of 

microoperations. The number of different types of microoperations that are available in a given 

system is finite. A control unit whose binary control variables are stored in memory is called a 

microprogrammed control unit. Each word in control memory contains within it a 

microinstruction. The microinstruction specifies one or more microoperations for the system. A 

sequence of microinstructions constitutes a microprogram.  

A computer that employs a microprogrammed control unit will have two separate memories: a 

main memory and a control memory. The main memory is available to the user for storing the 

programs. The contents of main memory may alter when the data are manipulated and every 

time that the program is changed. The user's program in main memory consists of machine 
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instructions and data.  While the control memory holds a fixed microprogram that cannot be 

altered by the occasional user.  

The general configuration of a microprogrammed control unit is demonstrated in the block 

diagram of Fig(21).  

  

Address Sequencing  

Microinstructions are stored in control memory in groups, with each group routine 

specifying a routine. An initial address is loaded into the control address register when power is 

turned on in the computer. This address is usually the address of the first microinstruction that 

activates the instruction fetch routine. The fetch routine may be sequenced by incrementing the 

control address register through the rest of its microinstructions.  

In summary, the address sequencing capabilities required in a control memory are:   

1. Incrementing of the control  address register.   

2. Unconditional branch or conditional branch, depending on status bit conditions.   

3. A mapping process from the bits of the instruction to an address for control memory.   

4. A facility for subroutine call and return.  

  

Instruction format:  

The computer instruction format is depicted in Fig(22-a). It consists of  three fields: a 1bit 

held for indirect addressing symbolized by J, a 4-bit  operation code (opcode), and an 11bit 

address field. Fig(22-b) lists four of the 16 possible memory-reference instructions.  
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Microinstruction Format  

The microinstruction format for the control memory is shown in Fig(23). The format 20 

bits of the microiristruction are divided into four functional parts. The three fields Fl, F2, and 

F3 specify microoperations for the computer. The CD field selects status bit conditions. The BR 

field specifies the type of branch to be used. The AD field contains a branch address. The address 

field is seven bits wide, since the control memory has 128 = 27 words.  

The microoperations are subdivided into three fields of three bits each. The three bits in each 

field are encoded to specify seven distinct microoperations as listed in Table (13). This gives a 

total of 21 microoperations.  

The CD (condition) field consists of two bits which are encoded to specify four status bit 

conditions as listed in Table. The first condition is always a 1, so that a reference to CD = 00 (or 

the symbol U) will always find the condition to be true. When this condition is used in 

conjunction with the BR (branch) field, it provides an unconditional branch operation. The 

indirect bit I is available from bit 15 of DR after an instruction is read from memory. The sign 

bit of AC provides the next status bit.  
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Design of Control Unit  

The Fig(24) shows the three decoders and some of the connections that must be made 

from their outputs. Each of the three fields of the  microinstruction presently available in the 

output of control memory are decoded with a 3x8 decoder to provide eight outputs. For example, 

when Fl = 101 (binary 5), the next clock pulse transition transfers the content of DK(0-10) to 

AR (symbolized by DRTAR in Table). Similarly, when Fl = 110 (binary 6) there is a transfer 

from PC to AR (symbolized by PCTAR).  

  

Central Processing Unit  

The CPU is made up of three major parts, as shown in Fig(25).   

1- The register set stores intermediate data used during the execution of the instructions. The 

arithmetic   

2- logic unit (ALU) performs the required microoperations for executing the instructions.  

3- The control unit supervises the transfer of information among the registers and instructs 

the ALU as to which operation to perform.  
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General Register Organization  

The memory locations are needed for storing pointers, counters, return addresses, 

temporary results, and partial products during multiplication. A bus organization for seven CPU 

registers is shown in Fig(26):  

  

The control unit that operates the CPU bus system directs the information flow through 

the registers and ALU by selecting the various components in the system. For example, to 

perform the operation:   
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𝑅1 ← 𝑅2 + 𝑅3  

The control must provide binary selection variables to the following selector inputs:   

1. MUX A selector (SELA): to place the content of R2 into bus A.   

2. MUX B selector (SELB): to place the content of R3 into bus B.   

3. ALU operation selector (OPR): to provide the arithmetic addition A + B.   

4. Decoder destination selector (SELD): to transfer the content of the output bus into Rl. To 

achieve a fast response time, the ALU is constructed with high-speed circuits.  

There are 14 binary selection inputs in the unit, and their combined value control word specifies 

a control word. The three bits of SELA select a source register for the A input of the  ALU. The 

three bits of SELB select a register for the B input of the ALU. The three bits of SELD select a 

destination register using the decoder and its seven load outputs. The five bits of OPR select one 

of the operations in the ALU.  

The encoding of the register selections is specified in Table(14):  

  

Table(15) OPR field has five bits and each operation is designated with a symbolic name.  

  

  

For example, the subtract microoperation given by the statement:  
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𝑅1 ← 𝑅2 − 𝑅3  

The binary control word for the subtract microoperation is 010 01l 001 00101 and is obtained as 

follows:  

  

Stack Organization  

A useful feature that is included in the CPU of most computers is a stack or last-in, firstout 

(LIFO) list. The two operations of a stack are the insertion and deletion of items. The operation 

of insertion is called push, while the operation of deletion is called pop. In a 64-word stack, the 

stack pointer contains 6 bits because 26 = 64.   

The push operation is implemented with the following sequence of microoperations:  

  

The pop operation consists of the following sequence of microoperations:  

  

Instruction Formats  

The format of an instruction is usually depicted in a rectangular box symbolizing the bits 

of the instruction as they appear in memory words or in a control register. The bits of the 

instruction are divided into groups called fields. The most common fields found in instruction 

formats are:   

1. An operation code field that specifies the operation to be performed.   

2. An address field that designates a memory address or a processor register.   

3. A mode field that specifies the way the operand or the effective address is determined. An 

example of an accumulator-type organization, the instruction that specifies an arithmetic 

addition is defined by an assembly language instruction as:  



 

  
Data Transfer and Manipulation  

Most computer instructions can be classified into three categories:  

1. Data transfer instructions.   

2. Data manipulation instructions.   

3. Program control instructions.  

Data transfer instructions cause transfer of data from one location to another without changing 

the binary information content. The table(17) list the Data transfer instructions:  

  
Data manipulation instructions are those that perform arithmetic, logic, and shift operations. 

The data manipulation  instructions in a typical computer are usually divided into three basic 

types:   

1- Arithmetic instructions.   

2. Logical and bit manipulation instructions.   

3. Shift instructions.  
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Reduced Instruction Set Computer (RISC)  

An important aspect of computer architecture is the design of the instruction set for the 

processor. The instruction set chosen for a particular computer determines the way that machine 

language programs are constructed. A computer with a large number of instructions is classified 

as a Complex Instruction Set Computer, abbreviated CISC. In the early 1980s, a number of 

computer designers recommended that computers use fewer instructions with simple constructs 

so they can be executed much faster within the CPU without having to use memory as often.  

 

       The RISC (Reduced Instruction Set Computer) type of computer is classified as a reduced 

instruction set computer or RISC.  

 

In Summary, The Major Characteristics of CISC Architecture Are:   

1. A large number of instructions—typically from 100 to 250 instructions.   

2. Some instructions that perform specialized tasks and are used infrequently.   

3. A large variety of addressing modes—typically from 5 to 20 different modes.   

4. Variable-length instruction formats.   

5. Instructions that manipulate operands in memory.  

 

The Major Characteristics of A RISC Processor Are:   

1. Relatively few instructions.   

2. Relatively few addressing modes.   

3. Memory access limited to load and store instructions.   

4. All operations done within the registers of the CPU.   

5. Fixed-length, easily decoded instruction format.   

6. Single-cycle instruction execution.   

7. Hardwired rather than microprogrammed control.  

  

Memory Hierarchy  

The memory unit is an essential component in any digital computer since it is needed for 

storing programs and data. The memory unit that communicates directly with the CPU is called 

the main memory. Devices that provide backup storage are called auxiliary memory. They are 

used for storing system programs, large data files, and other backup information. Only programs 

and data currently needed by the processor reside in main memory. All other information is 

stored in auxiliary memory and transferred to main memory when needed.  A special very-high-
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speed memory called a cache is sometimes used to increase the speed of processing by making 

current programs and data available to the CPU at a rapid rate. Fig(29) shows the Memory 

Hierarchy:  

  
Main Memory The main memory is the central storage unit in a computer system. It is a 

relatively large and fast memory used to store programs and data during the computer operation. 

The principal technology used for the main memory is based on semiconductor integrated 

circuits. Integrated circuit RAM chips are available in two possible operating modes:  

The static RAM consists essentially of internal flip-flops that store the binary information.  The 

dynamic RAM stores the binary information in the form of electric charges that are applied to 

capacitors.  

  

Associative Memory  

Many data-processing applications require the search of items in a table stored in memory. 

An assembler program searches the symbol address table in order to extract the symbol's binary 

equivalent.   

A memory unit accessed by content is called an associative memory or Content 

Addressable Memory (CAM). When a word is written in an associative memory is capable of 

finding an empty unused location to store the word. When a word is to be read from an 

associative memory, the content of the word, or part of the word, is specified. The memory 

locates all words which match the specified content and marks them for reading. The block 

diagram of an associative memory is shown in Fig (30):  
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To illustrate with a numerical example, suppose that the argument register A and the key register 

K have the bit configuration shown below. Only the three left most bits of A are compared with 

memory words because K has l's in these positions.  

  
Word 2 matches the unmasked argument field because the three leftmost bits of the argument 

and the word are equal.  

  

Cache Memory  

If the active portions of the program and data are placed in a fast small memory, the 

average memory access time can be reduced, thus reducing the total execution time of the 

program. Such a fast small memory is referred to as a cache memory. It is placed between the 

CPU and main memory.   

The basic operation of the cache is as follows. When the CPU needs to access memory, 

the cache is examined. If the word is found in the cache, it is read from the fast memory. If the 

word addressed by the CPU is not found in the cache, the main memory is accessed to read the 

word. The performance of cache memory is frequently measured in terms of a quantity called 

hit ratio. When the CPU refers to memory and finds the word in cache, it is said to produce a 

hit. If the word is not found in cache, it is in main memory and it counts as a miss.   

Three types of mapping procedures are of practical interest when considering the 

organization of cache memory:  

1. Associative mapping   

2. Direct mapping   

3. Set-associative mapping  

  

Virtual Memory  

Virtual memory is a concept used in some large computer systems that permit the user to 

construct programs as though a large memory space were available, equal to the totality of 

auxiliary memory. Virtual memory is used to give programmers the illusion that they have a very 

large memory at their disposal(تصرف), even though the computer actually has a relatively small 

main memory. A virtual memory system provides a mechanism for translating program 

generated addresses into correct main memory locations.   

As an illustration, consider a computer with a main-memory capacity of 32K words (K = 1024). 

Fifteen bits are needed to specify a physical address in memory since 32K = 215. Suppose that 

the computer has available auxiliary memory for storing 220 = 1024K words. Thus auxiliary 

memory has a capacity for storing information equivalent to the capacity of 32 main memories.  

Denoting the address space by N and the memory space by M, we then have for this example N 

= 1024K and M = 32K.  
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The mapping table may be stored in a separate memory as shown in Fig (31) or in main 

memory. In the first case, an additional memory unit is required as well as one extra memory 

access time. In the second case, the table takes space from main memory and two accesses to 

memory are required with the program running at half speed.  

  
 

The table implementation of the address mapping is simplified if the information in the 

address space and the memory space are each divided into groups of fixed size. The physical 

memory is broken down into groups of equal size pages and blocks called blocks, which may 

range from 64 to 4096 words each. The term page refers to groups of address space of the same 

size. For example, if a page or block consists of IK words, then, using the previous example, 

address space is divided into 1024 pages and main memory is divided into 32 blocks.  

The organization of the memory mapping table in a paged system is shown in Fig(32). 

The memory-page table consists of eight words, one for each page. The address in the page table 

denotes the page number and the content of the word gives the block number where that page is 

stored in main memory. The table shows that pages 1, 2, 5, and 6 are now available in main 

memory in blocks 0, 1, 2, and 3, respectively. A presence bit in each location indicates whether 

the page has been transferred from auxiliary memory into main memory. A0 in the presence bit 

indicates that this page is not available in main memory.  
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Memory Management Hardware  

A memory management system is a collection of hardware and software procedures for 

managing the various programs residing in memory. The memory management software is part 

of an overall operating system available in many computers.  

The basic components of a memory management unit are:   

1. A facility for dynamic storage relocation that maps logical memory references into 

physical memory addresses.   

2. A provision for sharing common programs stored in memory by different users.   

3. Protection of information against unauthorized access between users and preventing 

users from changing operating system functions.  

The fixed page size used in the virtual memory system causes certain difficulties with respect to 

program size and the logical structure of programs. It is more convenient to divide programs and 

segment data into logical parts called segments.   

A segment is a set of logically related instructions or data elements associated with a given 

name. Segments may be generated by the programmer or by the operating system. Examples of 

segments are a subroutine, an array of data, a table of symbols, or a user's program. The address 

generated by a segmented program is called a logical address. The logical address may be larger 

than the physical memory address as in virtual memory, but it may also be equal, and sometimes 

even smaller than the length of the physical memory address.  

Numerical Example: A numerical example may clarify the operation of the memory 

management unit. Consider the 20-bit logical address specified in Fig(33-a). This configuration 

allows each segment to have any number of pages up to 256. The smallest possible segment will 

have one page or 256 words. The largest possible segment will have 256 pages, for a total of 

256 x 256 = 64K words. The physical memory shown in Fig(33-b).  

Paging splits the address space into equal sized units called pages. 

While segmentation splits the memory into unequal units that may have sizes more meaningful or 

appropriate to the program. 

  
  

Consider a program loaded into memory that requires five pages. The operating system may 

assign to this program segment 6 and pages 0 through 4, as shown in Fig(34-a). The total logical 

address range for the program is from hexadecimal 60000 to 604FF. The correspondence 
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between each memory block and logical page number is then entered in a table as shown in 

Fig(34-b).  

  
The information from this table is entered in the segment and page tables as shown in    Fig(35- 

a). Now consider the specific logical address given in Fig(35). The 20-bit address is listed as a 

five-digit hexadecimal number. It refers to word number 7E of page 2 in segment 6. The base of 

segment 6 in the page table is at address 35. Segment 6 has associated with it five pages, as 

shown in the page table at addresses 35 through 39. Page 2 of segment 6 is at address 35 + 2 = 

37. The physical memory block is found in the page table to be 019. Word 7E in block 19 gives 

the 20-bit physical address 0197E. Note that page 0 of segment 6 maps into block 12 and page 

1 maps into block 0. The associative memory in Fig(35-b) shows that pages 2 and 4 of segment 

6 have been referenced previously and therefore their corresponding block numbers are stored 

in the associative memory.  

  
Continue  
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 Input-Output Organization  

The input-output subsystem of a computer, referred to as I/O, provides an efficient mode 

of communication between the central system and the outside environment. Programs and data 

must be entered into computer memory for processing and results obtained from computations 

must be recorded or displayed for the user.  

  

Peripheral Devices  

Input or output devices attached to the computer are also called peripherals.   

 The display terminal can operate in a single-character mode where all characters entered 

on the screen through the keyboard are transmitted to the computer simultaneously. In the 

block mode, the edited text is first stored in a local memory inside the terminal. The text 

is transferred to the computer as a block of data.  

 Printers provide a permanent record on paper of computer output data.  
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 Magnetic tapes are used mostly for storing files of data.  

 Magnetic disks have high-speed rotational surfaces coated with magnetic material.  

  

Input-Output Interface  

Input-output interface provides a method for transferring information between internal storage 

and external I/O devices. Peripherals connected to a computer need special communication links 

for interfacing them with the central processing unit. The major differences are:  

1. Peripherals are electromechanical and electromagnetic devices and their manner of 

operation is different from the operation of the CPU and memory, which are electronic 

devices. Therefore, a conversion of signal values may be required.   

2. The data transfer rate of peripherals is usually slower than the transfer rate of the CPU, 

and consequently, a synchronization mechanism may be needed.   

3. Data codes and formats in peripherals differ from the word format in the CPU and 

memory.   

4. The operating modes of peripherals are different from each other and each must be 

controlled so as not to disturb the operation of other peripherals connected to the CPU.  

A typical communication link between the processor and several peripherals is shown in Fig.36. 

The I/O bus consists of data lines, address lines, and control lines. The magnetic disk, printer, 

and terminal are employed in practically any general-purpose computer. The interface selected 

responds to the function code and proceeds to execute it. The function code is referred to as an 

I/O command and is in essence an instruction that is executed in the interface and its attached 

peripheral unit.  

There are three ways that computer buses can be used to communicate with memory and I/O:   

1. Use two separate buses, one for memory and the other for I/O.   

2. Use one common bus for both memory and I/O but have separate control lines for each.   

3. Use one common bus for memory and I/O with common control lines.  

                     
Isolated I/O versus Memory-Mapped I/O  

Many computers use one common bus to transfer information between memory or I/O and the 

CPU. In the isolated I/O configuration, the CPU has distinct input and output instructions, and 
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each of these instructions is associated with the address of an interface register. The isolated I/O 

method isolates memory and I/O addresses so that memory address values are not affected by 

interface address assignment since each has its own address space. The other alternative is to 

use the same address space for both memory and I/O.   

                                    
This is the case in computers that employ only one set of read and write signals and do 

not distinguish between memory and I/O addresses. This configuration is referred to as memory 

mapped I/O. In a memory-mapped I/O organization there is no specific input or output 

instructions. Computers with memory-mapped I/O can use memory-type instructions to access 

I/O data.  

An example of an I/O interface unit is shown in block diagram form in Fig.37. It consists 

of two data registers called ports, a control register, a status register, bus buffers, and timing and 

control circuits. The interface communicates with the CPU through the data bus. The chip select 

and register select inputs determine the address assigned to the interface. The I/O read and write 

are two control lines that specify an input or output, respectively. The four registers 

communicate directly with the I/O device attached to the interface.  

  

Asynchronous Data Transfer  

The internal operations in a digital system are synchronized by means of clock pulses supplied 

by a common pulse generator. If the registers in the interface share a common clock with the 

CPU registers, the transfer between the two units is said to be synchronous. In most cases, the 

internal timing in each unit is independent from the other in that each uses its own private clock 

for internal registers. In that case, the two units are said to be asynchronous to each other. This 
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approach is widely used in most computer systems. Asynchronous data transfer between two 

independent units requires that control signals be transmitted between the communicating units 

to indicate the time at which data is being transmitted. Two way of achieving this:  

 The strobe: pulse supplied by one of the units to indicate to the other unit when the transfer 

has to occur.  

 The handshaking: The unit receiving the data item responds with another control signal to 

acknowledge receipt of the data.  

The strobe pulse method and the handshaking method of asynchronous data transfer are not 

restricted to I/O transfers.  

The strobe may be activated by either the source or the destination unit. Figure 38 shows a 

source-initiated transfer and the timing diagram.   

                            
Fig.39 shows the strobe of a memory-read control signal from the CPU to a memory.   

                             
The disadvantage of the strobe method is that the source unit that initiates the transfer has no 

way of knowing whether the destination unit has actually received the data item that was placed 

in the bus. The handshake method solves this problem by introducing a second control signal 

that provides a reply to the unit that two-wire control initiates the transfer.  

Figure 40 shows the data transfer procedure when initiated by the source. The two handshaking 

lines are data valid, which is generated by the source unit, and data accepted, generated by the 
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destination unit. The timing diagram shows the exchange of signals between the two units. 

Figure 41 the destination-initiated transfer using handshaking lines. Note that the name of the 

signal generated by the destination unit has been changed to ready for data to reflect its new 

meaning.  

Asynchronous Serial Transfer  

The transfer of data between two units may be done in parallel or serial. In parallel data 

transmission, each bit of the message has its own path and the total message is transmitted at the 

same time. This means that an w-bit message must be transmitted through n separate conductor 

paths. In serial data transmission, each bit in the message is sent in sequence one at a time. This 

method requires the use of one pair of conductors or one conductor and a common ground. 

Parallel transmission is faster but requires many wires. It is used for short distances and where 

speed is important. Serial transmission is slower but is less expensive since it requires only one 

pair of conductors. Serial transmission can be synchronous or asynchronous. A transmitted 

character can be detected by the receiver from knowledge of the transmission rules:   

1. When a character is not being sent, the line is kept in the 1-state.   

2. The initiation of a character transmission is detected from the start bit, which is always(0).   

3. The character bits always follow the start bit.   

4. After the last bit of the character is transmitted, a stop bit is detected when the line returns 

to the 1-state for at least one bit time.  
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Modes of Transfer  

Data transfer between the central computer and I/O devices may be handled in a variety of 

modes. three possible modes:   

1. Programmed I/O: The operations are the result of I/O instructions written in the computer 

program. Each data item transfer is initiated by an instruction in the program. The CPU 

stays in a program loop until the I/O unit indicates that it is ready for data transfer. This 

is a time-consuming process since it keeps the processor busy needlessly. An example of 

data transfer from an I/O device through an interface into the CPU is shown in Fig. 43.  

              
2. Interrupt-initiated I/O:  It can be avoided by using an interrupt facility and special 

commands to inform the interface to issue an interrupt request signal when the data are 

available from the device. In the meantime the CPU can proceed to execute another 

program. This method of connection between three devices and the CPU is shown in Fig. 

44.  

                    
3. Direct memory access (DMA): the interface transfers data into and out of the memory unit 

through the memory bus. The CPU initiates the transfer by supplying the interface with 

the starting address and the number of words needed to be transferred and then proceeds 

to execute other tasks. This method of connection between devices and the memory is 

shown in Fig. 45.  
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Pipelining  

Pipelining is a technique of decomposing a sequential process into sub-operations; with each 

sub-process being executed in a special dedicated segment that operates concurrently with 

all other segments. A pipeline can be visualized as a collection of processing segments 

through which binary information flows.  

General Considerations  

Any operation that can be decomposed into a sequence of sub-operations of about the same 

complexity can be implemented by a pipeline processor. The general structure of a 

foursegment pipeline is illustrated in Fig. 46. The operands pass through all four segments 

in a fixed sequence.  

             
The space-time diagram of a four-segment pipeline is demonstrated in Fig47.  

             
The speedup(S) of a pipeline processing over an equivalent non-pipeline processing is 

defined by the ratio:                                
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As the number of tasks increases, n becomes much larger than 𝑘 − 1, and 𝑘 + 𝑛 − 1            

approaches the value of n. Under this condition, the speedup becomes:  

  

numerical example: Let the time it takes to process a sub-operation in each segment be equal 

to 𝑡𝑝= 20 ns. Assume that the pipeline has 𝑘 = 4 segments and executes 𝑛 = 100            tasks 

in sequence. The pipeline system will take   

(𝑘 + 𝑛 − 1)𝑡𝑝 = (4 + 99) × 20 = 2060𝑛𝑠  

 to complete. Assuming that  t = ktp = 4 x 20 = 80 ns,  a 

non-pipeline system requires:  

𝑛𝑘𝑡𝑝 = 100 × 80 = 8000𝑛𝑠  

 to complete the 100 tasks. The speedup ratio is equal to:  

8000⁄2060 = 3.88  

Instruction Pipeline  

The computer needs to process each instruction with the following sequence of steps:  

1. Fetch the instruction from memory.   

2. Decode the instruction.   

3. Calculate the effective address.   

4. Fetch the operands from memory.   

5. Execute the instruction.   

6. Store the result in the proper place.  

Figure 48 shows how the instruction cycle in the CPU can be processed with a four-segment 

pipeline. While an instruction is being executed in segment 4, the next instruction in sequence 

is busy fetching an operand from memory in segment 3.  

The four segments are represented in the flowchart:   

1. FI is the segment that fetches an instruction.   

2. DA is the segment that decodes the instruction and calculates the effective address.   

3. FO is the segment that fetches the operand.   

4. EX is the segment that executes the instruction.  
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A pipeline operation is said to have been stalled if one unit (stage) requires more time to perform 

its function, thus forcing other stages to become idle. Consider, for example, the case of an 

instruction fetch that incurs a cache miss. Assume also that a cache miss requires three extra 

time units.  

  

Instruction-Level Parallelism  

Contrary to pipeline techniques, instruction-level parallelism (ILP) is based on the idea of 

multiple issue processors (MIP). An MIP has multiple pipelined datapaths for instruction 

execution. Each of these pipelines can issue and execute one instruction per cycle. Figure 49 

shows the case of a processor having three pipes. For comparison purposes, we also show in the 

same figure the sequential and the single pipeline case.   
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Arithmetic Pipeline  

Pipeline arithmetic units are usually found in very high speed computers. They are used to 

implement floating-point operations, multiplication of fixed-point numbers, and similar 

computations encountered in scientific problems.  

an example of a pipeline unit for floating-point addition and subtraction. The inputs to the 

floating-point adder pipeline are two normalized floating-point binary numbers.  

  
A, B are two fractions that represent the mantissas and a, b are the exponents. The suboperations 

that are performed in the four segments are:   

1. Compare the exponents.   

2. Align the mantissas.   

3. Add or subtract the mantissas.   
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4. Normalize the result.  

Numerical example may clarify the sub-operations performed in each segment. For simplicity, 

we use decimal numbers, although Fig.49 refers to binary numbers. Consider the two normalized 

floating-point numbers:  

  

The two exponents are subtracted in the first segment to obtain(3 − 2 = 1). The larger exponent 

3 is chosen as the exponent of the result. The next segment shifts the mantissa of Y to the right 

to obtain:  

  
This aligns the two mantissas under the same exponent. The addition of the two mantissas in 

segment 3 produces the sum:  
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Suppose that the time delays of the four segments are 𝑡1 = 60𝑛𝑠, 𝑡2 = 70𝑛𝑠, 𝑡3 = 100𝑛𝑠, 𝑡4 = 
80𝑛𝑠, and the interface registers have a delay of  𝑡𝑟 = 10𝑛𝑠. The clock cycle is chosen to be 𝑡𝑝 

= 𝑡3 + 𝑡𝑟 = 110𝑛𝑠. An equivalent non-pipeline floating point adder-subtractor will have a delay 

time 𝑡𝑛 = 𝑡1 + 𝑡2 + 𝑡3 + 𝑡4 + 𝑡𝑟 = 320𝑛𝑠. In this case the pipelined adder has a speedup of 320/110 

= 2.9 over the non-pipelined adder.  

Supercomputers  

Supercomputers are very powerful, high-performance machines used mostly for scientific 

computations. To speed up the operation, the components are packed tightly together to 

minimize the distance that the electronic signals have to travel.  Supercomputers also use special 

techniques for removing the heat from circuits to prevent them from burning up because of their 

close proximity.  

A supercomputer is a computer system best known for its high computational speed, fast and 

large memory systems, and the extensive use of parallel processing.  

Delayed Branch  

Consider now the operation of the following four instructions:  

  
If the three-segment pipeline proceeds: (I: Instruction fetch, A:ALU operation, and E: Execute 

instruction) without interruptions, there will be a data conflict in instruction 3 because the 

operand in R2 is not yet available in the A segment. This can be seen from the timing of the 

pipeline shown in Fig. 50(a). The E segment in clock cycle 4 is in a process of placing the 

memory data into R2. The A segment in clock cycle 4 is using the data from R2, but the value 

in R2 will not be the correct value since it has not yet been transferred from memory. It is up to 

the compiler to make sure that the instruction following the load instruction uses the data fetched 

from memory. It was shown in Fig. 50 that a branch instruction delays the pipeline operation by 

NOP instruction until the instruction at the branch address is fetched.  
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Computer Arithmetic  

Arithmetic instructions in digital computers manipulate data to produce results necessary for the 

solution of computational problems. An arithmetic processor is the part of a processor unit that 

executes arithmetic operations. The data type assumed to reside in processor registers during the 

execution of an arithmetic instruction is specified in the definition of the instruction. The solution 

to any problem that is stated by a finite number of well-defined procedural steps is called an 

algorithm.   

Addition and Subtraction with Signed-Magnitude Data: We designate the magnitude of the 

two numbers by A and B. When the signed numbers are added or subtracted, we find that there 

are eight different conditions to consider, depending on the sign of the numbers and the   

operation performed. These conditions are listed in the first column of Table 18.  The other 

columns in the table show the actual operation to be performed with the magnitude of the 

numbers. The last column is needed to prevent a negative zero. In other words, when two equal 

numbers are subtracted, the result should be +0 not -0.  
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Hardware Implementation: Let A and B be two registers that hold the magnitudes of the 

numbers, and As and Bs be two flip-flops that hold the corresponding signs. Consider now the 

hardware implementation of the algorithms above:  

1- First, a parallel-adder is needed to perform the microoperation A + B.   

2- Second, a comparator circuit is needed to establish if A > B, A = B, or A < B.   

3- Third, two parallel-subtractor circuits are needed to perform the microoperations (A-B) and 

(B-A).   

4- The sign relationship can be determined from an exclusive- OR gate with As and Bs as inputs.  

Careful investigation of the alternatives reveals that the use of 2's complement for subtraction 

and comparison is an efficient procedure that requires only an adder and a complementer. Figure 

51 shows a block diagram of the hardware for implementing the addition and subtraction 

operations. It consists of registers A and B and sign flip-flops As and Bs. Subtraction is done by 

adding A to the 2's complement of B. The output carry is transferred to flip-flop E, where it can 

be checked to determine the relative magnitudes of the two numbers. The add-overflow flip-flop 

AVF holds the overflow bit when A and B are added.  

  
The adder is equal to the sum A + B. When M = 1, the l's complement of B is applied to the 

adder, the input carry is 1, and output S = A + B +1. This is equal to A plus the 2's complement 

of B, which is equivalent to the subtraction A - B. The signed 2's complement representation of 

numbers together with arithmetic algorithms for addition and subtraction are introduced as: The 

leftmost bit of a binary number represents the sign bit: 0 for positive and 1 for negative. If the 

sign bit is 1, the entire number is represented in 2's complement form. Thus +33 is represented 

as 00100001 and -33 as 11011111. Note that 11011111 is the 2's complement of 00100001, and 

vice versa. The addition of two numbers in signed 2's complement form consists of adding the 

numbers with the sign bits treated the same as the other bits of the number. A carry-out of the 

sign-bit position is discarded. The subtraction consists of first taking the 2's complement of the 

subtrahend and then adding it to the minuend.  
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Multiplication Algorithms  

Multiplication of two fixed-point binary numbers in signed-magnitude representation is done 

with paper and pencil by a process of successive shift and add operations. This process is best 

illustrated with a numerical example:  

  
Figure 52 is a flowchart of the hardware multiply algorithm. Initially, the multiplicand is in B 

and the multiplier in Q. Their corresponding signs are in Bs and Qs, respectively. The signs are 

compared, and both A and Q are set to correspond to the sign of the product since a 

doublelength product will be stored in registers A and Q. Registers A and E are cleared and the 

sequence counter SC is set to a number equal to the number of bits of the multiplier.  

  
  

The numerical example is repeated to clarify the hardware multiplication process. It operates on 

the fact that strings of 0's in the multiplier require no addition but just shifting, while string of 
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1's in the multiplier require addition with shifting. The table 19 illustrate numerical example for 

multiplier 23 (which in binary equal 10111) by 19 (which binary equal 10011) gives the result 

437(in binary equal 0110110101).  

          
  

Division Algorithms  

Division of two fixed-point binary numbers in signed-magnitude representation is done with 

paper and pencil by a process of successive compare, shift, and subtract operations. Binary 

division is simpler than decimal division because the quotient digits are either 0 or 1 and there 

is no need to estimate how many times the dividend or partial remainder fits into the divisor. 

The division process is illustrated by a numerical example in Figure 52.                     

                         
The hardware for implementing the division operation is identical to that required for 

multiplication and consists of the components Register EAQ is now shifted to the left with 0 
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inserted into Q, and the previous value of E lost. The numerical example is repeated as in Figure 

53:  

  
  

Decimal Arithmetic Unit  

To perform arithmetic operations with decimal data, it is necessary to convert the input decimal 

numbers to binary, to perform all calculations with binary numbers, and to convert the results 

into decimal. It can add or subtract decimal numbers, usually by forming the 9's or 10's 

complement of the subtrahend. Consider the arithmetic addition of two decimal digits in BCD, 

together with a possible carry from a previous stage. To add 0110 to the binary sum, we use a 

second 4-bit binary adder as shown in Fig. 54. The two decimal digits, together with the 

inputcarry, are first added in the top 4-bit binary adder to produce the binary sum. When the 

outputcarry is equal to 0, nothing is added to the binary sum.  
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A straight subtraction of two decimal numbers will require a subtractor circuit that will be 

somewhat different from a BCD adder. The 9's complement of a decimal digit represented in 

BCD may be obtained by complementing the bits in the coded representation of the digit 

provided a correction is included. There are two possible correction methods. In the first method, 

binary 1010 (decimal 10) is added to each complemented digit and the carry discarded after 

each addition. In the second method, binary 0110 (decimal 6) is added before the digit is 

complemented.   

  
One stage of a decimal arithmetic unit that can add or subtract two BCD  digits is shown in Fig. 

55. It consists of a BCD adder and a 9's complementer.  The mode M controls the operation of 
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the unit. With M = 0, the S outputs form the sum of A and B. With M = 1, the S outputs form 

the sum of A plus the 9’s complement of B. For numbers with n decimal digits we need n such 

stages.  The output carry Ci+1 from one stage must be connected to the input carry Ci  of the next-

higher-order stage. The best way to subtract the two decimal numbers is to let M = 1 and apply 

a 1 to the input carry Ci of the first stage.  The outputs will form the sum of A plus the 10's 

complement of B, which is equivalent to a subtraction operation if the carry-out of the last stage 

is discarded.  

As a numerical illustration, the 9's complement of BCD 0111 (decimal 7) is computed by first 

complementing each bit to obtain 1000. Adding binary 1010 and discarding the carry, we obtain 

0010 (decimal 2). By the second method, we add 0110 to 0111 to obtain 1101. Complementing 

each bit, we obtain the required result of 0010. One stage of a decimal arithmetic unit that can 

add or subtract two BCD digits is shown in Figure 55. It consists of a BCD adder and a 9's 

complementer.  

  

Reduced Instruction Set Computers (RISCs)  

The RISC approach is RISC-based machines are reality and they are characterized by a 

number of common features such as simple and reduced instruction set, fixed instruction format, 

one instruction per machine cycle, pipeline instruction fetch/execute units, ample number of 

general purpose registers (or alternatively optimized compiler code generation), Load/Store 

memory operations, and hardwired control unit design. While Complex Instruction Set 

Computers (CISCs) is became apparent that a complex instruction set has a number of 

disadvantages. These include a complex instruction decoding scheme, an increased size of the 

control unit, and increased logic delays.  

  

RISCs DESIGN PRINCIPLES  

A computer with the minimum number of instructions has the disadvantage that a large 

number of instructions will have to be executed in realizing even a simple function. This will 

result in a speed disadvantage. The observations about typical program behavior have led to the 

following conclusions:  

1. Simple movement of data (represented by assignment statements), rather than complex 

operations, are substantial and should be optimized.  

2. Conditional branches are predominant and therefore careful attention should be paid to 

the sequencing of instructions. This is particularly true when it is known that pipelining is 

indispensable to use.  

3. Procedure calls/return are the most time-consuming operations and therefore a 

mechanism should be devised to make the communication of parameters among the calling and 

the called procedures cause the least number of instructions to execute.  

4. A prime candidate for optimization is the mechanism for storing and accessing local scalar 

variables.  
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The following set of common characteristics among RISC machines is observed:  

1. Fixed-length instructions  

2. Limited number of instructions (128 or less)  

3. Limited set of simple addressing modes (minimum of two: indexed and PC-relative)  

4. All operations are performed on registers; no memory operations  

5. Only two memory operations: Load and Store  

6. Pipelined instruction execution  

7. Large number of general-purpose registers or the use of advanced compiler technology to 

optimize register usage  

8. One instruction per clock cycle  

9. Hardwired control unit design rather than microprogramming  

  

RISCs VERSUS CISCs  

Tables 20 show a limited comparison between an example RISC and CISC machine in terms of 

characteristics:  

  
  

MULTIPROCESSORS  

A multiple processor system consists of two or more processors that are connected in a 

manner that allows them to share the simultaneous (parallel) execution of a given computational 

task. Parallel processing has been advocated as a promising approach for building high-

performance computer systems. The organization and performance of a multiple processor 

system are greatly influenced by the interconnection network used to connect them. On the one 

hand, a single shared bus can be used as the interconnection network for multiple processors.  

  

CLASSIFICATION OF COMPUTER ARCHITECTURES  

A number of classification schemes have been proposed, these include:  

1- the Flynn’s classification (1966).  

2- the Kuck (1978).   

3- the Hwang and Briggs (1984).   
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4- the Erlangen (1981).   

5- the Giloi (1983).   

6- the Skillicorn (1988).  7- the Bell (1992).   

The instruction stream is defined as the sequence of instructions performed by the computer. 

The data stream is defined as the data traffic exchanged between the memory and the processing 

unit. This leads to four distinct categories of computer architectures:  

1. Single-instruction single-data streams (SISD)  

2. Single-instruction multiple-data streams (SIMD)  

3. Multiple-instruction single-data streams (MISD)  

4. Multiple-instruction multiple-data streams (MIMD)  

  

SIMD SCHEMES  

Two main SIMD configurations have been used in real-life machines. These are shown in Figure 

56.  

  
  

MIMD SCHEMES  

MIMD machines use a collection of processors, each having its own memory, which can be used 

to collaborate on executing a given task. In general, MIMD systems can be categorized based 

on their memory organization into shared-memory and message-passing architectures.  
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INTERCONNECTION NETWORKS  

The classification of interconnection networks is based on topology. Interconnection networks 

are classified as either static or dynamic. In Figure 58, is provide such a taxonomy.  
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Reduced Instruction Set Computer (RISC)  

An important aspect of computer architecture is the design of the instruction set for the 

processor. The instruction set chosen for a particular computer determines the way that machine 

language programs are constructed. A computer with a large number of instructions is classified 

as a complex instruction set computer, abbreviated CISC. In the early 1980s, a number of 

computer designers recommended that computers use fewer instructions with simple constructs 

so they can be executed much faster within the CPU without having to use memory as often. 

This RISC type of computer is classified as a reduced instruction set computer or RISC.  

In summary, the major characteristics of CISC architecture are:   

1. A large number of instructions—typically from 100 to 250 instructions.   

2. Some instructions that perform specialized tasks and are used infrequently.   

3. A large variety of addressing modes—typically from 5 to 20 different modes.   

4. Variable-length instruction formats.   

5. Instructions that manipulate operands in memory.  

The major characteristics of a RISC processor are:   

1. Relatively few instructions.   

2. Relatively few addressing modes.   

3. Memory access limited to load and store instructions.   

4. All operations done within the registers of the CPU.   

5. Fixed-length, easily decoded instruction format.   

6. Single-cycle instruction execution.   

7. Hardwired rather than microprogrammed control.  

  

Memory Hierarchy  

The memory unit is an essential component in any digital computer since it is needed for 

storing programs and data. The memory unit that communicates directly with the CPU is called 

the main memory. Devices that provide backup storage are called auxiliary memory. They are 

used for storing system programs, large data files, and other backup information. Only programs 

and data currently needed by the processor reside in main memory. All  other information is 

stored in auxiliary memory and transferred to main memory when needed.  A special very-high-

speed memory called a cache is sometimes used to increase the speed of processing by making 

current programs and data available to the CPU at a rapid rate. Fig(29) shows the Memory 

Hierarchy:  
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Main Memory The main memory is the central storage unit in a computer system. It is a 

relatively large and fast memory used to store programs and data during the computer operation. 

The principal technology used for the main memory is based on semiconductor integrated 

circuits. Integrated circuit RAM chips are available in two possible operating modes:  

The static RAM consists essentially of internal flip-flops that store the binary information.  The 

dynamic RAM stores the binary information in the form of electric charges that are applied to 

capacitors.  

  

Associative Memory  

Many data-processing applications require the search of items in a table stored in memory. 

An assembler program searches the symbol address table in order to extract the symbol's binary 

equivalent.   

A memory unit accessed by content is called an associative memory or content 

addressable memory (CAM). When a word is written in an associative memory is capable of 

finding an empty unused location to store the word. When a word is to be read from an 

associative memory, the content of the word, or part of the word, is specified. The memory 

locates all words which match the specified content and marks them for reading. The block 

diagram of an associative memory is shown in Fig(30):  
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To illustrate with a numerical example, suppose that the argument register A and the key register 

K have the bit configuration shown below. Only the three left most bits of A are compared with 

memory words because K has l's in these positions.  

  
Word 2 matches the unmasked argument field because the three leftmost bits of the argument 

and the word are equal.  

  

Cache Memory  

If the active portions of the program and data are placed in a fast small memory, the 

average memory access time can be reduced, thus reducing the total execution time of the 

program. Such a fast small memory is referred to as a cache memory. It is placed between the 

CPU and main memory.   

The basic operation of the cache is as follows. When the CPU needs to access memory, 

the cache is examined. If the word is found in the cache, it is read from the fast memory. If the 

word addressed by the CPU is not found in the cache, the main memory is accessed to read the 

word. The performance of cache memory is frequently measured in terms of a quantity called 

hit ratio. When the CPU refers to memory and finds the word in cache, it is said to produce a 

hit. If the word is not found in cache, it is in main memory and it counts as a miss.   

Three types of mapping procedures are of practical interest when considering the 

organization of cache memory:  

1. Associative mapping   

2. Direct mapping   

3. Set-associative mapping  

  

Virtual Memory  

Virtual memory is a concept used in some large computer systems that permit the user to 

construct programs as though a large memory space were available, equal to the totality of 

auxiliary memory. Virtual memory is used to give programmers the illusion that they have a very 

large memory at their disposal, even though the computer actually has a relatively small main 

memory. A virtual memory system provides a mechanism for translating programgenerated 

addresses into correct main memory locations.   

As an illustration, consider a computer with a main-memory capacity of 32K words (K = 1024). 

Fifteen bits are needed to specify a physical address in memory since 32K = 215. Suppose that 

the computer has available auxiliary memory for storing 220 = 1024K words. Thus auxiliary 

memory has a capacity for storing information equivalent to the capacity of 32 main memories.  
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Denoting the address space by N and the memory space by M, we then have for this example N 

= 1024K and M = 32K.  

The mapping table may be stored in a separate memory as shown in Fig(31) or in main 

memory. In the first case, an additional memory unit is required as well as one extra memory 

access time. In the second case, the table takes space from main memory and two accesses to 

memory are required with the program running at half speed.  

  
The table implementation of the address mapping is simplified if the information in the 

address space and the memory space are each divided into groups of fixed size. The physical 

memory is broken down into groups of equal size pages and blocks called blocks, which may 

range from 64 to 4096 words each. The term page refers to groups of address space of the same 

size. For example, if a page or block consists of IK words, then, using the previous example, 

address space is divided into 1024 pages and main memory is divided into 32 blocks.  

The organization of the memory mapping table in a paged system is shown in Fig(32). 

The memory-page table consists of eight words, one for each page. The address in the page table 

denotes the page number and the content of the word gives the block number where that page is 

stored in main memory. The table shows that pages 1, 2, 5, and 6 are now available in main 

memory in blocks 0, 1, 2, and 3, respectively. A presence bit in each location indicates whether 

the page has been transferred from auxiliary memory into main memory. A0 in the presence bit 

indicates that this page is not available in main memory.  
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Memory Management Hardware  

A memory management system is a collection of hardware and software procedures for 

managing the various programs residing in memory. The memory management software is part 

of an overall operating system available in many computers.  

The basic components of a memory management unit are:   

1. A facility for dynamic storage relocation that maps logical memory references into 

physical memory addresses.   

2. A provision for sharing common programs stored in memory by different users.   

3. Protection of information against unauthorized access between users and preventing 

users from changing operating system functions.  

The fixed page size used in the virtual memory system causes certain difficulties with respect to 

program size and the logical structure of programs. It is more convenient to divide programs and 

segment data into logical parts called segments.   

A segment is a set of logically related instructions or data elements associated with a given 

name. Segments may be generated by the programmer or by the operating system. Examples of 

segments are a subroutine, an array of data, a table of symbols, or a user's program. The address 

generated by a segmented program is called a logical address. The logical address may be larger 

than the physical memory address as in virtual memory, but it may also be equal, and sometimes 

even smaller than the length of the physical memory address.  

Numerical Example: A numerical example may clarify the operation of the memory 

management unit. Consider the 20-bit logical address specified in Fig(33-a).This configuration 

allows each segment to have any number of pages up to 256. The smallest possible segment will 

have one page or 256 words. The largest possible segment will have 256 pages, for a total of 

256 x 256 = 64K words. The physical memory shown in Fig(33-b).  
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Consider a program loaded into memory that requires five pages. The operating system may 

assign to this program segment 6 and pages 0 through 4, as shown in Fig(34-a). The total logical 

address range for the program is from hexadecimal 60000 to 604FF. The correspondence 

between each memory block and logical page number is then entered in a table as shown in  

Fig(34-b).  

  
The information from this table is entered in the segment and page tables as shown in    Fig(35- 

a). Now consider the specific logical address given in Fig(35). The 20-bit address is listed as a 

five-digit hexadecimal number. It refers to word number 7E of page 2 in segment 6. The base of 

segment 6 in the page table is at address 35. Segment 6 has associated with it five pages, as 

shown in the page table at addresses 35 through 39. Page 2 of segment 6 is at address 35 + 2 = 

37. The physical memory block is found in the page table to be 019. Word 7E in block 19 gives 

the 20-bit physical address 0197E. Note that page 0 of segment 6 maps into block 12 and page 

1 maps into block 0. The associative memory in Fig(35-b) shows that pages 2 and 4 of segment 

6 have been referenced previously and therefore their corresponding block numbers are stored 

in the associative memory.  
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Input-Output Organization  

The input-output subsystem of a computer, referred to as I/O, provides an efficient mode 

of communication between the central system and the outside environment. Programs and data 

must be entered into computer memory for processing and results obtained from computations 

must be recorded or displayed for the user.  

  

Peripheral Devices  

Input or output devices attached to the computer are also called peripherals.   

 The display terminal can operate in a single-character mode where all characters entered 

on the screen through the keyboard are transmitted to the computer simultaneously. In the 

block mode, the edited text is first stored in a local memory inside the terminal. The text 

is transferred to the computer as a block of data.  

 Printers provide a permanent record on paper of computer output data.  

 Magnetic tapes are used mostly for storing files of data.  

 Magnetic disks have high-speed rotational surfaces coated with magnetic material.  

  

Input-Output Interface  

Input-output interface provides a method for transferring information between internal storage 

and external I/O devices. Peripherals connected to a computer need special communication links 

for interfacing them with the central processing unit. The major differences are:  
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1. Peripherals are electromechanical and electromagnetic devices and their manner of 

operation is different from the operation of the CPU and memory, which are electronic 

devices. Therefore, a conversion of signal values may be required.   

2. The data transfer rate of peripherals is usually slower than the transfer rate of the CPU, 

and consequently, a synchronization mechanism may be needed.   

3. Data codes and formats in peripherals differ from the word format in the CPU and 

memory.   

4. The operating modes of peripherals are different from each other and each must be 

controlled so as not to disturb the operation of other peripherals connected to the CPU.  

A typical communication link between the processor and several peripherals is shown in Fig.36. 

The I/O bus consists of data lines, address lines, and control lines. The magnetic disk, printer, 

and terminal are employed in practically any general-purpose computer. The interface selected 

responds to the function code and proceeds to execute it. The function code is referred to as an 

I/O command and is in essence an instruction that is executed in the interface and its attached 

peripheral unit.  

There are three ways that computer buses can be used to communicate with memory and I/O:   

1. Use two separate buses, one for memory and the other for I/O.   

2. Use one common bus for both memory and I/O but have separate control lines for each.   

3. Use one common bus for memory and I/O with common control lines.  

                     
Isolated I/O versus Memory-Mapped I/O  

Many computers use one common bus to transfer information between memory or I/O and the 

CPU. In the isolated I/O configuration, the CPU has distinct input and output instructions, and 

each of these instructions is associated with the address of an interface register. The isolated I/O 

method isolates memory and I/O addresses so that memory address values are not affected by 

interface address assignment since each has its own address space. The other alternative is to 

use the same address space for both memory and I/O.   
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This is the case in computers that employ only one set of read and write signals and do not 

distinguish between memory and I/O addresses. This configuration is referred to as memory 

mapped I/O. In a memory-mapped I/O organization there is no specific input or output 

instructions. Computers with memory-mapped I/O can use memory-type instructions to access 

I/O data.  

An example of an I/O interface unit is shown in block diagram form in Fig.37. It consists of two 

data registers called ports, a control register, a status register, bus buffers, and timing and control 

circuits. The interface communicates with the CPU through the data bus. The chip select and 

register select inputs determine the address assigned to the interface. The I/O read and write are 

two control lines that specify an input or output, respectively. The four registers communicate 

directly with the I/O device attached to the interface.  

  

Asynchronous Data Transfer  

The internal operations in a digital system are synchronized by means of clock pulses supplied 

by a common pulse generator. If the registers in the interface share a common clock with the 

CPU registers, the transfer between the two units is said to be synchronous. In most cases, the 

internal timing in each unit is independent from the other in that each uses its own private clock 

for internal registers. In that case, the two units are said to be asynchronous to each other. This 

approach is widely used in most computer systems. Asynchronous data transfer between two 
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independent units requires that control signals be transmitted between the communicating units 

to indicate the time at which data is being transmitted. Two way of achieving this:  

 The strobe: pulse supplied by one of the units to indicate to the other unit when the transfer 

has to occur.  

 The handshaking: The unit receiving the data item responds with another control signal to 

acknowledge receipt of the data.  

The strobe pulse method and the handshaking method of asynchronous data transfer are not 

restricted to I/O transfers.  

The strobe may be activated by either the source or the destination unit. Figure 38 shows a 

source-initiated transfer and the timing diagram.   

                            
Fig.39 shows the strobe of a memory-read control signal from the CPU to a memory.   

                             
The disadvantage of the strobe method is that the source unit that initiates the transfer has no 

way of knowing whether the destination unit has actually received the data item that was placed 

in the bus. The handshake method solves this problem by introducing a second control signal 

that provides a reply to the unit that two-wire control initiates the transfer.  
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Figure 40 shows the data transfer procedure when initiated by the source. The two handshaking 

lines are data valid, which is generated by the source unit, and data accepted, generated by the 

destination unit. The timing diagram shows the exchange of signals between the two units. 

Figure 41 the destination-initiated transfer using handshaking lines. Note that the name of the 

signal generated by the destination unit has been changed to ready for data to reflect its new 

meaning.  

  
 

Pipelining  

Pipelining is a technique of decomposing a sequential process into sub-operations; with each 

sub-process being executed in a special dedicated segment that operates concurrently with 

all other segments. A pipeline can be visualized as a collection of processing segments 

through which binary information flows.  

General Considerations  

Any operation that can be decomposed into a sequence of sub-operations of about the same 

complexity can be implemented by a pipeline processor. The general structure of a four 

segment pipeline is illustrated in Fig. 46. The operands pass through all four segments in a 

fixed sequence.  

             
The space-time diagram of a four-segment pipeline is demonstrated in Fig47.  
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The speedup(S) of a pipeline processing over an equivalent non-pipeline processing is 

defined by the ratio:                                

As the number of tasks increases, n becomes much larger than 𝑘 − 1, and 𝑘 + 𝑛 − 1            

approaches the value of n. Under this condition, the speedup becomes:  

  

numerical example: Let the time it takes to process a sub-operation in each segment be equal 

to 𝑡𝑝= 20 ns. Assume that the pipeline has 𝑘 = 4 segments and executes 𝑛 = 100            tasks 

in sequence. The pipeline system will take   

(𝑘 + 𝑛 − 1)𝑡𝑝 = (4 + 99) × 20 = 2060𝑛𝑠  

 to complete. Assuming that  t = k×tp = 4 x 20 = 80 ns,  a 

non-pipeline system requires:  

𝑛𝑘𝑡𝑝 = 100 × 80 = 8000𝑛𝑠  

 to complete the 100 tasks. The speedup ratio is equal to:  

8000⁄2060 = 3.88  

Instruction Pipeline  

The computer needs to process each instruction with the following sequence of steps:  

1. Fetch the instruction from memory.   

2. Decode the instruction.   

3. Calculate the effective address.   

4. Fetch the operands from memory.   

5. Execute the instruction.   

6. Store the result in the proper place.  
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Figure 48 shows how the instruction cycle in the CPU can be processed with a four-segment 

pipeline. While an instruction is being executed in segment 4, the next instruction in sequence 

is busy fetching an operand from memory in segment 3.  

The four segments are represented in the flowchart:   

1. FI is the segment that fetches an instruction.   

2. DA is the segment that decodes the instruction and calculates the effective address.   

3. FO is the segment that fetches the operand.   

4. EX is the segment that executes the instruction.  

                                
A pipeline operation is said to have been stalled if one unit (stage) requires more time to perform 

its function, thus forcing other stages to become idle. Consider, for example, the case of an 

instruction fetch that incurs a cache miss. Assume also that a cache miss requires three extra 

time units.  

  

Instruction-Level Parallelism  

Contrary to pipeline techniques, instruction-level parallelism (ILP) is based on the idea of 

multiple issue processors (MIP). An MIP has multiple pipelined data paths for instruction 



15  

  

execution. Each of these pipelines can issue and execute one instruction per cycle. Figure 49 

shows the case of a processor having three pipes. For comparison purposes, we also show in the 

same figure the sequential and the single pipeline case.  Instruction-level parallelism (ILP) is the 

parallel or simultaneous execution of a sequence of instructions in a computer program. More 

specifically ILP refers to the average number of instructions run per step of this parallel 

execution. 

: (ILP) لمتوازي أو المتزامن لسلسلة من التعليمات في برنامج كمبيوتر. بشكل أكثر تحديداً ، يشيرهو التنفيذ ا ILP  إلى متوسط عدد التعليمات التي يتم

 .تشغيلها لكل خطوة من هذا التنفيذ المتوازي

                       
  

Computer Arithmetic  

            Arithmetic instructions in digital computers manipulate data to produce results necessary 

for the solution of computational problems. An arithmetic processor is the part of a processor 

unit that executes arithmetic operations. The data type assumed to reside in processor registers 

during the execution of an arithmetic instruction is specified in the definition of the instruction. 

The solution to any problem that is stated by a finite number of well-defined procedural steps is 

called an algorithm.   



16  

  

Addition and Subtraction with Signed-Magnitude Data: We designate (عين) the magnitude of 

the two numbers by A and B. When the signed numbers are added or subtracted, we find that 

there are eight different conditions to consider, depending on the sign of the numbers and the   

operation performed. These conditions are listed in the first column of Table 18.  The other 

columns in the table show the actual operation to be performed with the magnitude of the 

numbers. The last column is needed to prevent a negative zero. In other words, when two equal 

numbers are subtracted, the result should be +0 not -0.  

                       

56  

  

Multiplication Algorithms  

Multiplication of two fixed-point binary numbers in signed-magnitude representation is done 

with paper and pencil by a process of successive shift and add operations. This process is best 

illustrated with a numerical example:  

Note: The product of multiplying any binary number x by a single binary digit is always either 0 or x. Therefore, the multiplication 

of two binary numbers comes down to shifting the multiplicand left appropriately for each non-zero bit in the multiplier, and then 

adding the shifted numbers together 

  
Figure 52 is a flowchart of the hardware multiply algorithm. Initially, the multiplicand is in B 

and the multiplier in Q. Their corresponding signs are in Bs and Qs, respectively. The signs are 

compared, and both A and Q are set to correspond to the sign of the product since a double 

length product will be stored in registers A and Q. Registers A and E are cleared and the 

sequence counter SC is set to a number equal to the number of bits of the multiplier.  
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https://www.youtube.com/watch?v=2IxktI0BOu4 

 
  

58 

The hardware for implementing the division operation is identical to that required for 

multiplication and consists of the components Register EAQ is now shifted to the left with 0 

inserted into Q, and the previous value of E lost. The numerical example is repeated as in Figure 

53:  

Multiplication Process 

The multiplier and multiplicand are loaded into two registers Q and M. 

A Third Register A is initially set to zero. 

C is the 1-bit register holds the carry bit resulting from addition. Now 

The control logic reads bits of the multiplier at one time. 

      If Q0 is 1, the multiplicand is added to register A and stored back in register A with C bit used for carry. 

       Then all the bits of CAQ are shifted to right 1 bit, so that C bit goes to An-1 A0 goes to  

Qn-1 and Qn is lost. 

      If Q0 is 0 no addition is performed just do the shift. 

The process is repeated for each bit of the original multiplier.  

The result 2n bit product is contained in QA registers 
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Decimal Arithmetic Unit  

To perform arithmetic operations with decimal data, it is necessary to convert the input decimal 

numbers to binary, to perform all calculations with binary numbers, and to convert the results 

into decimal. It can add or subtract decimal numbers, usually by forming the 9's or 10's 

complement of the subtrahend(المطروح). Consider the arithmetic addition of two decimal digits in 

BCD, together with a possible carry from a previous stage. To add 0110 to the binary sum, we 

use a second 4-bit binary adder as shown in Fig. 54. The two decimal digits, together with the 

input- carry, are first added in the top 4-bit binary adder to produce the binary sum. When the 

output carry is equal to 0, nothing is added to the binary sum.  
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Reduced Instruction Set Computers (RISCs)  

The RISC approach is RISC-based machines are reality and they are characterized by a 

number of common features such as simple and reduced instruction set, fixed instruction format, 

one instruction per machine cycle, pipeline instruction fetch/execute units, ample number of 

general purpose registers (or alternatively optimized compiler code generation), Load/Store 

memory operations, and hardwired control unit design. While Complex Instruction Set 

Computers (CISCs) is became apparent that a complex instruction set has a number of 

disadvantages. These include a complex instruction decoding scheme, an increased size of the 

control unit, and increased logic delays.  

  

RISCs DESIGN PRINCIPLES  

A computer with the minimum number of instructions has the disadvantage that a large 

number of instructions will have to be executed in realizing even a simple function. This will 

result in a speed disadvantage. The observations about typical program behavior have led to the 

following conclusions:  

1. Simple movement of data (represented by assignment statements), rather than complex 

operations, are substantial and should be optimized.  
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2. Conditional branches are predominant and therefore careful attention should be paid to 

the sequencing of instructions. This is particularly true when it is known that pipelining 

is indispensable to use.  

3. Procedure calls/return are the most time-consuming operations and therefore a 

mechanism should be devised to make the communication of parameters among the 

calling and the called procedures cause the least number of instructions to execute.  

4. A prime candidate for optimization is the mechanism for storing and accessing local 

scalar variables.  

  

The following set of common characteristics among RISC machines is observed:  

1. Fixed-length instructions  

2. Limited number of instructions (128 or less)  

3. Limited set of simple addressing modes (minimum of two: indexed and PC-relative)  

4. All operations are performed on registers; no memory operations  

5. Only two memory operations: Load and Store  

6. Pipelined instruction execution  

7. Large number of general-purpose registers or the use of advanced compiler technology to 

optimize register usage  

8. One instruction per clock cycle  

9. Hardwired control unit design rather than microprogramming  

  

RISCs VERSUS CISCs  

Tables 20 show a limited comparison between an example RISC and CISC machine in terms of 

characteristics:  

  
  

MULTIPROCESSORS  

A multiple processor system consists of two or more processors that are connected in a 

manner that allows them to share the simultaneous (parallel) execution of a given computational 

task. Parallel processing has been advocated as a promising approach for building high-

performance computer systems. The organization and performance of a multiple processor 

system are greatly influenced by the interconnection network used to connect them. On the one 

hand, a single shared bus can be used as the interconnection network for multiple processors.  
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CLASSIFICATION OF COMPUTER ARCHITECTURES  

A number of classification schemes have been proposed, these include:  

1- the Flynn’s classification (1966).  

2- the Kuck (1978).   

3- the Hwang and Briggs (1984).   

4- the Erlangen (1981).   

5- the Giloi (1983).   

6- the Skillicorn (1988).  7- the Bell (1992).   

The instruction stream is defined as the sequence of instructions performed by the computer. 

The data stream is defined as the data traffic exchanged between the memory and the processing 

unit. This leads to four distinct categories of computer architectures:  

 

1. Single-instruction single-data streams (SISD)  

2. Single-instruction multiple-data streams (SIMD)  

3. Multiple-instruction single-data streams (MISD)  

4. Multiple-instruction multiple-data streams (MIMD)  

  

SIMD SCHEMES  

Two main SIMD configurations have been used in real-life machines. These are shown in Figure 

56.  
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MIMD SCHEMES  

MIMD machines use a collection of processors, each having its own memory, which can be used 

to collaborate on executing a given task. In general, MIMD systems can be categorized based 

on their memory organization into shared-memory and message-passing architectures.  
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INTERCONNECTION NETWORKS  

The classification of interconnection networks is based on topology. Interconnection networks 

are classified as either static or dynamic. In Figure 58, is provide such a taxonomy.  

  
  

  

  

  

  

  



Parallel Processing

The purpose of parallel processing is to speed up the computer 
processing capability and increase its throughput, that is, the 
amount of processing that can be accomplished during a given 
interval of time.

Execution of Concurrent Events in the computing process to 
achieve faster Computational Speed

The amount of hardware increases with parallel processing, 
and with it, the cost of the system increases.

However, technological developments have reduced hardware 
costs to the point where parallel processing techniques are 
economically feasible.



Parallel processing according to levels of complexity

Multiplicity of functional 
units that performs 
identical or different 
operations simultaneously.  

Serial Shift register VS 
parallel load registers

At the lower level

At the higher level



Parallel Computers



SISD COMPUTER SYSTEMS



Von Neumann Architecture



MISD COMPUTER SYSTEMS



SIMD COMPUTER SYSTEMS



MIMD COMPUTER SYSTEMS



PIPELINING

A technique of decomposing a sequential process into 
suboperations, with each subprocess being executed in a 
partial dedicated segment that operates concurrently
with all other segments.

A pipeline can be visualized as a collection of processing 
segments through which binary information flows.

The name “pipeline” implies a flow of information analogous 
to an industrial assembly line.



Example of the Pipeline Organization
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PIPELINE AND MULTIPLE FUNCTION UNITS
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ARITHMETIC PIPELINE



INSTRUCTION CYCLE



INSTRUCTION PIPELINE



INSTRUCTION EXECUTION IN A 4-STAGE PIPELINE



Pipeline



Space time diagram
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