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* RISC and CISC
* [/O Organization and Peripheral Control Strategies.
* I/O Interfaces and Programming

« Asynchronous data transfer

> Memory Management.

* Memory types and Hierarchy
* Main Memory address map.

« Associative Memory and Content Addressable Memories.

> Parallel Processing
* Pipeline (general consideration).
* Arithmetic Pipeline.
* Instruction Pipeline.
* Difficulties and Solutions in Instruction Pipeline.

« Vector processing and Array Processing.

1. Introduction

Computer architecture is the organization of the components which make up a computer system and
the meaning of the operations which guide its function. It defines what is seen on the machine interface,
which is targeted by programming languages and their compilers.

Q1:\ What is computer architecture?
Computer architecture can be defined as a set of rules and methods that describe the functionality,
management and implementation of computers. To be precise, it is nothing but rules by which a system performs
and operates.

Computer Architecture can be divided into mainly three categories, which are as follows —

o Instruction set Architecture or ISA — Whenever an instruction is given to processor, its role is to read
and act accordingly. It allocates memory to instructions and also acts upon memory address mode (Direct
Addressing mode or Indirect Addressing mode).

e Micro Architecture — It describes how a particular processor will handle and implement instructions
from ISA.

e System design — It includes the other entire hardware component within the system such as
virtualization, multiprocessing.



Role of computer Architecture

The main role of Computer Architecture is to balance the performance, efficiency, cost and reliability of a
computer system.

For Example — Instruction set architecture (ISA) acts as a bridge between computer's software and hardware.
It works as a programmer's view of a machine.

Computers can only understand binary language (i.e., 0, 1) and users understand high level language (i.e., if
else, while, conditions, etc). So to communicate between user and computer, Instruction set Architecture plays
a major role here, translating high level language to binary language.

Structure Computer Architecture

Example structure of Computer Architecture as given below. Generally, computer architecture consists of
the following —

o Processor
e Memory
o Peripherals

All the above parts are connected with the help of system bus, which consists of address bus, data bus and
control bus.

The diagram given below depicts the computer architecture —
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1.1. RISC and CISC Architecture
Means classification of instructions set to categories to increase the performance of
Computer (Classification Instruction Set According Languages program)

1. Reduced Instruction Set Computer (RISC)
An important aspect of computer architecture is the design of the instruction set for the
processor. The instruction set chosen for a particular computer determines the way that machine
language programs are constructed. A computer with a large number of instructions is classified
as a complex instruction set computer, abbreviated CISC. In the early 1980s, a

Reduced Instruction Set Computer or RISC Architecture

The fundamental goal of RISC is to make hardware simpler by employing an instruction set that
consists of only a few basic steps used for evaluating, loading, and storing operations. A load command loads
data but a store command stores data.

Characteristics of RISC:

1. It has simpler instructions and thus simple instruction decoding.
2. More general-purpose registers.

3. The instruction takes one clock cycle in order to get executed.
4. The instruction comes under the size of a single word.

5. Pipeline can be easily achieved.

6. Few data types.

7. Simpler addressing modes.

2. Complex Instruction Set Computer or CISC Architecture

The fundamental goal of CISC is that a single instruction will handle all evaluating, loading, and
storing operations, similar to how a multiplication command will handle evaluating, loading, and storing data,
which is why it’s complicated.

Characteristics of CISC:

1. Instructions are complex, and thus it has complex instruction decoding.

2. The instructions may take more than one clock cycle in order to get executed.

3. The instruction is larger than one-word size.

4. Lesser general-purpose registers since the operations get performed only in the memory.
5. More data types.

6. Complex addressing modes.

Both CISC and RISC approaches primarily try to increase the performance of a CPU. Here is how both of
these work:

1. CISC: This kind of approach tries to minimize the total number of instructions per program, and it does so at the
cost of increasing the total number of cycles per instruction.

2. RISC: It reduces the cycles per instruction and does so at the cost of the total number of instructions per
program.
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CPU Time = Seconds — Instructions X Cyc.fes— Seconds
Program Program Instructions Cycle

When
programming was done in assembly language earlier, there was a desire to make the instructions perform more
tasks. It is because assembly programming was arduous (@4%) and error-prone (Uadll (i 2) and led to the
evolution of CISC architecture. But as the dependency of high-level language on assembly language
decreased, RISC architecture prevailed (aibwd) sa),

Example

Suppose we need to add two different 8-bit numbers:

1. CISC approach: There would be a single instruction or command for this, such as ADD, that would
perform the task.

2. RISC approach: In this case, the programmer would write the very first load command in order to load
data in the registers. Then it would use a suitable operator and store the obtained result in the location that is
desired.

The add operation here is divided into parts, namely, operate, load, and store. Due to this, RISC
programs are much longer, and they require more memory to get stored, even though they require fewer
transistors because the commands are less complex.

Q1:\ What is combinational circuit?

In digital electronics, a combinational circuit is a circuit in which the output depends on the present
combination of inputs. Combinational circuits are made up of logic gates. The output of each logic gate is
determined by its logic function.

Q2: What is difference between combinational and sequential circuit?
1. combinational circuit is time-independent. The output it generates does not depend on any of its
previous inputs.
2. sequential circuits are the ones that depend on clock cycles. They depend entirely on the past as well
as the present inputs for generating output.



Parameters

Meaning and
Definition

Combinational Circuit

It is a type of circuit that
generates an output by relyving on

the imput it receives at that
instant, and it stays independent

of time.

Feedback

A Combinational Circuit requires

no feedback for generating the
next output. It is because its
output has no dependency on the
time instance.

Performance

We require the input of only the

current state for a Combinational
Circuit. Thus, it performs much
faster and better in comparison
with the Sequential Circuit.

Complexity

It is very less complex in

comparison. i is because it
basically lacks implementation of

feedback.

Elementary

Logic gates form the buildings

Blocks elementary blocks of a
Combinational Circuit.

O peration One can use these types of
circuits for both- Boolean as well
as Arithmetic operations.

A —
Multiple B Combinational One or More
Inputs Logic Circuit Outputs

[ —
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Unlike Sequential Logic Circuits whose outputs are dependent on both their present inputs and

Sequential Circuit

It is a type of circuit in which the output does
not only rely on the current input. It also relies
on the previous ones.

The output of a Seguential Circuit, on the other
hand, relies on both- the previous feedback and
the current input. So, the output generated from
the previous inputs gets transferred in the form
of feedback. The circuit uses it (along with
inputs) for generating the next cutput.

In the case of a Sequential Circuit, the
performance is very slow and also
comparatively lower. Its dependency on the
previous inputs makes the process much more
complex.

This type of circuit is always more complex in
its mature and functionality. It is because it
implements the feedback, depends on previous
inputs and also on clocks.

Flip-flops form the building/ elementary blocks
of a Sequential Circuit.

You can mainly make use of these types of
circuits for storing data.

Combinational Logic Circuits

Combinational Logic Circuits are
memoryless digital logic circuits
whose output at any instant in time
depends only on the combination of
its inputs.

their previous output state giving them some form of Memory.

The outputs of Combinational Logic Circuits are only determined by the logical

function of their current input state, logic “0” or logic “1”, at any given instant in time.

Q4:\ You have Three digital inputs (A, B, C) and output (Q), Design Combinational Logic Circuits (your

Answer should appear (Logical diagram, Boolean Expression and Typical truth table)?

Solution



Logic Gates

=Y Boolean Expression

s
Digital B )D—‘ Q = (AB).(A+B).C
Inputs
Qutput (Q)
A8 ocoo|o
Logic Dvagram LU | o
010 4]
o 1 1 0]
100 1
Typical 1 01 o
Truth Table 11 0 o
1 1 1 1]

Q1:\ What are the differences between Combinational circuitry and State circuitry?
Solution
1. Combinational circuitry behaves like a simple function. The output of combinational circuitry depends
only on the current values of its input.
2. State circuitry behaves more like an object method. The output of state circuitry does not just depend
on its inputs — it also depends on the past history of its inputs.

Q2: \What is the Difference Between Half Adder and Full Adder?

Solution

There is a primary difference between half adder and full adder. Half adder only adds the current inputs as 1-bit
numbers and does not focus on the previous inputs. On the other hand, Full Adder can easily carry the current
inputs as well as the output from the previous additions.

What is a Half Adder?

It is a combinational logic circuit. You can design it by connecting one AND gate and one EX-OR gate.
A half-adder circuit consists of two input terminals- namely A and B. Both of these add two input digits (one-
bit numbers) and generate the output in the form of a carry and a sum. Thus, there are two output terminals.

The output that one obtains from the EX-OR gate is the sum of both the one-bit numbers. The output
obtained from the AND gate is called the carry. But you cannot forward the carry that you obtain in one addition
into another addition. It is because of the absence of any logic gate to process it. Thus, it’s called the Half Adder
circuit.

We can write the equation of output for both the gates in the form of a logical operation that the logic gates
perform. Here, we write the carry equation in the form of AND operation and the sum equation in the form of
EX-OR operation.

Logical Expression of Half Adder

Sum(S)=A@B

Carry (C)=AxB

10



Truth Table

Here | a truth table representing the possible outputs obtained from the possible Inputs in a Hall Adder

Input Output

A B CARRY S0
0 o (0] o

i | 1 1 o

o 1 0 1

1 Q a 1

What is Full Adder?

A full adder is a circuit that has two AND gates, two EX-OR gates, and one OR gate. The full adder adds

three binary digits.
. It designates the input carry as the C-OUT and the normal output as S (or SUM).

Just like the Half Adder, the Full Ladder is a combinational type of logic circuit- meaning, it has no
storage element. But it has additional logic gates. Thus, it adds the previous carry to generate the complete
output. Thus, it is called the Full Adder.

One can also designate a Full Adder using one OR gate and two Half Adders. The OR gate here generates
a carry that it obtains after the addition. We obtain the sum of these digits in the form of output from the second
Half Adder.

The equation for the output that you can obtain by the EX-OR gate is the sum of all the binary digits. Here, the
output that you obtain from the AND gate is the carry that you obtain by addition. This equation is in the form
of a logical operation.

Logical Expression of Full Adder
CARRY-OUT = AB + BCin @ ACin
SUM = (A & B) @ Cin

Truth Table

A truth table represents the possible outputs obtained from the possible inputs. A truth table for the Full Adderis
as follows

Input Output

A B L SuM CARRY OUT
0 0 o ] a

1 1 L 1 B

o} 1 1 n] 1

1 o 1 o 1

o Lo} 1 1 o

o 1 o 1 o

1 a 0 1 8]

1 1 o] (8] B
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Q:\What are the main difference between Half Adder and Full Adder?

Solution

Parameter

Basics

Adding the
Previous Carry

Hardware
Architecture

Total Inputs

Usage

Logical
Expression

Half Adder

The Half Adder is a type of
combinational logic circuit that

adds two of the 1-bit binary digits. It
generates carry and sum of both the

inputs.

The Half Adder does not add the
carry obtained from the previous
addition to the next one.

A Half Adder consists of only one
ANMND gate and EX-OR gate

There are two inputs in a Half
Adder- A and B.

The Half Adder is good for digital
measuring devices, computers,
calculators, and many more.

Here is the logical expression of
Half Adder:

cC=A*B
S=AFEB

Full Adder

The Full Adder is also a type of
combinational logic that adds three of the 1-
bit binary digits for performing an addition
operation. t generates a sum of all three
inputs along with a carry value.

The Full Adder, along with its current inputs A
and B, also adds the previous carry.

A Full Adder consists of one OR gate and two
EX-OR and AND gates.

There are a total of three inputs in a Full
Adder- AL B, C-in.

The Full Adder comes into play in various
digital processors, the addition of multiple
bits, and many more.

Here is the logical expression of Full Adder:
Cout = (AB) + CinA & CinB

S=A&£ B E£ Cin

Q6: What Means by multiplexer?

Multiplexing is the generic term used to describe the operation of sending one or more analogue or digital
signals over a common transmission line at different times or speeds and as such, the device we use to do just
that is called the multiplexer.

The multiplexer, shortened to “MUX” or “MPX?, is a combinational logic circuit designed to switch one of
several input lines through to a single common output line by the application of a control signal. Multiplexers
operate like very fast acting multiple position rotary switches connecting or controlling multiple input lines
called “channels” one at a time to the output.

A —0 The Multiplexer
B —1
Inputs C =1 o Q The multiplexer is a combinational logic circuit
t
D 5 utpu designed to switch one of several input lines to a
single common output line
ab
Select

A. Basic multiplexing Switch

12
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Truth
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Q7: What Means by Demultiplexer
o —~A The Demultiplexer
1——B
3
F ! 2 C Outputs The demultiplexer is a combinational logic
Input 5 D circuit designed to switch one common input
line to one of several seperate output line
ab
Select

The data distributor, known more commonly as the demultiplexer or “Demux” for short, is the exact opposite
of the Multiplexer we saw in the previous tutorial.

The demultiplexer takes one single input data line and then switches it to any one of a number of individual
output lines one at a time. The demultiplexer converts a serial data signal at the input to a parallel data at its
output lines as shown below.

13



1-to-4 Channel De-multiplexer

o— A
o—=»F
C ommon = Data
Input a - Cutputs
oe— [

Output a3 — Switch
Selected | —| Contral

Output Select _
Data Output
Selected
0 0 A
0 1 E
1 Q0 Z
1 1 O

The Boolean expression for this 1-to-4 Demultiplexer above with outputs A to D and data select lines a, b is
given as:

F = abA + abB +abC + abD

The function of the Demultiplexer is to switch one common data input line to any one of
the 4 output data lines A to D in our example above. As with the multiplexer the individua
solid state switches are selected by the binary input address code on the output select

pins “a” and “b” as shown.

Demultiplexer Output Line Selection

Lo A — A — A — A
F /—B F =5 F B F B
et R ey — —
b al—D b al—D b a—D b ar™D
[ [ L [
0 0 0 1 1 0 1 1

As with the previous multiplexer circuit, adding more address line inputs it is possible to

switch more outputs giving a 1-to-2" data line outputs.

14



08: What Means by Priority Encoder

. Inputs | Outputs oy d
Quiputs
e sooslea Priority Encoder
! 000 1[0
Das ke 4 S04 0|0 . o
s (), | EDCOSEE 0 1 00|10 Priority Encoders take all of their data inputs
Dy — é, g g g J ,1 one at a time and converts them into an

equivalent binary code at its output

Unlike a multiplexer that selects one individual data input line and then sends that data to a single output line
or switch. The job of a priority encoder is to produce a binary output address for the input with the highest
priority.

The Digital Encoder more commonly called a Binary Encoder takes ALL its data inputs one at a time and
then converts them into a single encoded output. So we can say that a binary encoder, is a multi-input
combinational logic circuit that converts the logic level “1” data at its inputs into an equivalent binary code at
its output.

Generally, digital encoders produce outputs of 2-bit, 3-bit or 4-bit codes depending upon the number of data
input lines. An “n-bit” binary encoder has 2" input lines and n-bit output lines with common types that include
4-t0-2, 8-to-3 and 16-to-4 line configurations.

Example:

4-to-2 Bit Binary Encoder

Inputs QOutputs

Qutputs
Ds D D1 Dp | Q1 Qo

Dg —» — (g

Dy —» 4x2 —> @
Encoder

Data
Inputs D5 — i

e I e

Lo e I e
e e L R
L e e e S

b L= e

D3 —
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09: What Means by Binary Decoder?

Inputs Outputs i Truth Table B . D d
[L—. —p (g . A B I”?-' Q; Q: Qs Inary eco er
B —al 208 | — Q. 0 0o|® o000
Binary 0110 WO D i i i :
el N s als T s Binary Decoder is another combinational logic
.y 110 001 circuit constructed from individual logic gates

and is the exact opposite to that of an Encoder

The term “Decoder” means to translate or decode coded information from one format into another, so a binary
decoder transforms “n” binary input signals into an equivalent code using 2" outputs.

Binary Decoders are another type of digital logic device that has inputs of 2-bit, 3-bit or 4-bit codes depending
upon the number of data input lines, so a decoder that has a set of two or more bits will be defined as having
an n-bit code, and therefore it will be possible to represent 2" possible values. Thus, a decoder generally decodes
a binary value into a non-binary one by setting exactly one of its n outputs to logic “1”.

Example: A 2-to-4 Binary Decoders

Inverter 4D_ Qo = ,EE
A 1 Dc

| Q1 =AB pecoded

Binary

Input Output
| 1 O— -
B
| Q1= AB
Data Lines

Inputs Qutputs Truth Table
A — —m g A B I Qo @1 Q2 Qs
B — 2tod4 | Q; o o| 1 0 0 O
Binary 0 1 o 1 0 0
Decoder [— Q- 1 0|0 0 1 0O
L > Q- 1 1|0 0 0 1
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010: What Means by Binary Adder?

— SUM = - dd

| o »| Binary Adder

B —m Full Outputs A
i Adder CARRY "8 | Binary Adders are arithmetic circuits in
_I:;putsl ouT YT |Cor +SWM | the form of half-adders and full-adders be

used to add together two binary digits

Another common and very useful combinational logic circuit which can be constructed using just a few basic
logic gates allowing it to add together two or more binary numbers is the Binary Adder.

A basic Binary Adder circuit can be made from standard AND and Ex-OR gates allowing us to “add” together
two single bit binary numbers, A and B.

The addition of these two digits produces an output called the SUM of the addition and a second output called
the CARRY or Carry-out, (Cour) bit according to the rules for binary addition. One of the main uses for

the Binary Adder is in arithmetic and counting circuits. Consider the simple addition of the two denary (base
10) numbers and Binary Addition of two bits below.

Decimal Addition Binary Addition of Two Bits
123 A 0 0 1 1
+ 789 B (Addend) +0 +1 +0 +1
212 SUM 0 1 1 (carry) 10

011: What Means by Binary Subtractor?

The Binary Subtractor is another type of combinational arithmetic circuit that produces an output which is the
subtraction of two binary numbers.

As their name implies, a Binary Subtractor is a decision making circuit that subtracts two binary numbers
from each other, for example, X — Y to find the resulting difference between the two numbers.

Unlike the Binary Adder which produces a SUM and a CARRY bit when two binary numbers are added
together, the binary subtractor produces a DIFFERENCE, D by using a BORROW bit, B from the previous
column. Then obviously, the operation of subtraction is the opposite to that of addition

17
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COMPUTER ARCHITECTURE

Digital Computer
The digital computer is a digital system that performs various computational tasks. Digital
computers use the binary number system, which has two digits: 0 and 1. A binary digit is called
a bit. Information is represented in digital computers in groups of bits. By using various coding
techniques, groups of bits can be made to represent not only binary numbers but also other
discrete symbols, such as decimal digits or letters of the alphabet. By judicious use of binary
arrangements and by using various coding techniques, the groups of bits are used to develop
complete sets of instructions for performing various types of computations.
A computer system is sometimes subdivided into two functional entities
1- The hardware of the computer consists of all the electronic components and
electromechanical devices that comprise the physical entity of the device.
2- Computer software consists of the instructions and data that the computer manipulates to
perform various data-processing tasks.
The system software of a computer consists of a collection of programs whose purpose is to
make more effective use of the computer. The programs included in a systems software package
are referred to as the operating system.

Computer Hardware
The hardware of the computer is usually divided into three major parts, as shown in Fig(1):

18
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Jnpuot Input~output processor Output
devices (IOP)  jdevices

Figure 1  Block diagram of a digital computer.

The central processing unit (CPU) contains arithmetic and logic unit for manipulating
data, a number of registers for storing data, and control circuits for fetching and executing
instructions. The memory of a computer contains storage for instructions and data. It is called a
random- access memory (RAM) because the CPU can access any location in memory at random
and retrieve the binary information within a fixed interval of time. The input and output
processor (IOP) contains electronic circuits for communicating and controlling the transfer of
information between the computer and the outside world. The input and output devices
connected to the computer include keyboards, printers, terminals, magnetic disk drives, and
other communication devices.

Computer Organization

Computer organization is concerned with the way the hardware components operate and
the way they are connected together to form the computer system. The various components are
assumed to be in place and the task is to investigate the organizational structure to verify that
the computer parts operate as intended.

Computer Design

Computer design is concerned with the hardware design of the computer. Once the
computer specifications are formulated, it is the task of the designer to develop hardware for the
system. Computer design is concerned with the determination of what hardware should be used
and how the parts should be connected. This aspect of computer hardware is sometimes referred
to as computer implementation.

Computer Architecture

Computer architecture is concerned with the structure and behavior of the computer as
seen by the user. It includes the information formats, the instruction set, and techniques for
addressing memory. The architectural design of a computer system is concerned with the

19



specifications of the various functional modules, such as processors and memories, and
structuring them together into a computer system.

Instruction Set Architecture

1. Opcodes: Consists of operate instructions: as logical and arithmetical instructions,
Data movement instructions and Control instructions
2. Data types: consists of 8, 16, 32, and 64 bits
3. Addressing modes: consists of:
- Operands specified
- Next instruction to execute is specified
- Architecture-specific
An instruction can use several addressing modes

Reqgister Transfer Language
Digital systems vary in size and complexity from a few integrated circuits to a complex of
interconnected and interacting digital computers. Digital system design invariably uses a
modular approach( e = 5l s ). The modules are constructed from such digital
components as registers, decoders, arithmetic elements, and control logic. The various
modules are interconnected with common data and control paths to form a digital computer
system.

Digital modules are best defined by the registers they contain and the operations that are
performed on the data stored in them. The operations executed on data stored in registers are
called micro operations(MO).

A micro operation is an elementary operation (slx i) performed on the information
stored in one or more registers. The result of the operation may replace the previous binary
information of a register or may be transferred to another register. Examples of micro
operations are shift, count, dear, and load.

The internal hardware organization of a digital computer is best defined by specifying:
1- The set of registers it contains and their function.

2- The sequence of micro operations performed on the binary information stored in the
registers.
3- The control that initiates the sequence of micro operations.

The symbolic notation used to describe the micro operation transfers among registers is
called a register transfer language.
The term "register transfer” implies the availability of hardware logic circuits that can
perform a stated micro operation and transfer the result of the operation to the same or another
register.

20



The word "language" is borrowed from programmers, who apply this term to
programming languages.
A register transfer language is a system for expressing in symbolic form the micro operation
sequences among the registers of a digital module.

Reqister Transfer
Computer registers are designated (c=2) by capital letters (sometimes followed by
numerals) to denote the function of the register.
For example:
MAR: memory address register
PC: program counter
IR: instruction register
R1: processor register
The representation of registers in block diagram form is shown in Fig(2):

[ RI | 765432 10]
(3) Register R (b) Showing individual bits

15 0 15 8 7 0

[ R2 | | rcw Pct) |
(c) Numbering of bits (d) Divided into two parts

Figure 2  Block diagram of register.

Rectangular box with the name of the register inside.

The individual bits.

The numbering of bits in a 16-bit register can be marked on top of the box. d- 16-bit

register is partitioned into two parts. Bits 0 through 7 are assigned the symbol L (for low

byte) and bits 8 through 15 are assigned the symbol H (for high byte).

d- The name of the 16-bit register is PC. The symbol PC (0-7) or PC(L) refers to the low-
order byte and PC (8-15) or PC(H) to the high-order byte. Information transfer from
one register to another is designated in symbolic form by means of a replacement
operator. The statement:

O T Q2
| I TR |

R2 « R1
Denotes a transfer of the content of register Rl into register R2. It designates a replacement
of the content of R2 by the content of RI. By definition, the content of the source register RI
does not change after the transfer.

If we want the transfer to occur only under a predetermined control condition. This can
be shown by means of an if-then statement.
If (P=1)then (R2 « R1)
where P is a control signal generated in the control section. It is sometimes convenient
21



to separate the control variables from the register transfer operation control function by
specifying a control function. (sss s yuas B oa dawad) Ji dles B asatl) Ay ¢ pSatl &l e Juad Ul aidlall ¢0.)
P:R2 < R1

The control condition is terminated with a colon. It symbolizes (;-») the requirement that the
transfer operation be executed by the hardware only if P = 1.

Ccm! - Log{ “?f 4—— Clock
T
e | Fl E 1
Load / \
Tramsfer occwurs here J

Transfer from R1 o R2Z when P = 1.

To separate two or more operations that is executed at the same time by using the comma as
the statement:

T:R2 < R1,R5 <« R3

The basic symbols of the register transfer notation are listed in Table (1) Registers are
denoted by capital letters, and numerals may follow the letters. Parentheses are used to denote
a part of a register by specifying the range of bits or by giving a symbol name to a portion of a
register.

TABLE | Basic Symbols for Register Transfers

Symbol Description Examples
Letters Denotes a register MAR, R2
(and numerals)
Parentheses ( ) Denotes a part of a register R2(0-7), R2(L)
Arrow <« Denotes transfer of information R2 « R1
Comma , Separates two microoperations  R2 <« R1, R1 « R2
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Bus and Memory Transfers

A typical digital computer has many registers, and paths must be provided to transfer
information from one register to another. The number of wires will be excessive («& dw) if
separate lines are used between each register and all other registers in the system.

A bus structure consists of a set of common lines, one for each bit of a register, through
which binary information is transferred one at a time. Control signals determine which register
Is selected by the bus during each particular register transfer. The multiplexers select the source
register whose binary information is then placed on the bus. For example, the construction of a
bus system for four registers is shown in Fig (3) Each register has four bits, numbered 0 through
3. The bus consists of four 4x1(4-input-one output) multiplexers each having four data inputs, 0
through 3, and two selection inputs, S1 and S0. (00,01,10,11)

4- ke
common
5 bes
e 4xi R ax1 e axi 4x1
MUX 3 MUX 2 MUX | MUX 0O
3 2 1 0O 3 2 1 0 3 2 1 0 331 0
A
BRE EEE BRE
D; C; B; Ay D, C, 8, A Dy Co By Ay
D: D. Dg C: C. C: 51 B. Bo Az A A:
3 210 3 2 1 0 32 10 321 B
Regisier D Regisier & Register 8 Regaper A

Fig 3 Bus system for four registers

The table (2) shows the register that is selected by the bus for each of the four possible
binary values of the selection lines.

Table 2 Function for Bus of Fig

S, So Register selected

0 0 A
0 1 B
1 0 C
1 1 D

The symbolic statement for a bus transfer may mention the bus or its presence may be
implied in the statement. When the bus is including in the statement, the register transfer is
symbolized as follows:
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Bus « C, R1 < Bus
The content of register C is placed on the bus, and the content of the bus is loaded into
register RI by activating its load control input. If the bus is known to exist in the system, it may
be convenient just to show the direct transfer.
R1<C
A bus system can be constructed with three-state gates. The graphic symbol of a three
state buffer gate is shown:

P Output Y= AifC =1

N :
ormal input A | r High-impedance if C =0

Control input C

Graphic symbols for three-state buffer.

To construct a common bus for four registers of n bits each using three-state buffers, we need n
circuits with four buffers in each as shown in Fig (4). Each group of four buffers receives one
significant bit from the four registers.

| ~ Bus line for bit 0
]
C
? L
Do 'B—-

0

2x4 !
decoder 2

S

m[
B X

Enable —— E

3

Figure 4 Bus line with three state-buffers.

The transfer of information from a memory word to the outside environment is called a
read operation. The transfer of new information to be stored into the memory is called a write
operation. Consider a memory unit that receives the address from a register, called the Address
Register, symbolized by AR. The data are transferred to another register, called the Data
Register, symbolized by DR.

Read: DR « M[AR]
The write operation transfers the content of a data register to a memory word M selected by the
address.
Write: M[AR] < DR
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Arithmetic Microoperations
The arithmetic operations are listed in the Table(3):
TABLE 3 Arithmetic Microoperations

-—

Symbolic

designation Description
R3 « R1 + R2 Contents of R1 plus R2 transferred to R3
R3 « R1 - R2 Contents of R1 minus R2 transferred to R3
R2 « R2 Complement the contents of R2 (1’s complement)
R2«~RZ +1 2's complement the contents of R2 (negate)
R3 « R1+ RZ +1  RI1 plus the 2's complement of R2 (subtraction)
Rl «< R1 +1 Increment the contents of R1 by one
Rl «~ R1-1 Decrement the contents of R1 by one

The multiply and divide are not listed in Table (3), these two operations are valid
arithmetic operations but are not included in the basic set of micro operations. In most
computers, the multiplication operation is implemented with a sequence of add and shift micro
operations. Division is implemented with a sequence of subtract and shift micro operations.
The digital circuit that generates the arithmetic sum of two binary numbers of any length is called

a binary adder as shown in Fig (5).
By Ay B Az B, A By

R

[

Cs S S S So

Figure § 4-bit binary adder.

The addition and subtraction operations can be combined into one common circuit by including
an exclusive-OR gate with each full-adder as shown in Fig (6).

By A B M B A By Ay
| | | i
) 1 ;
€y (& Gy Co
FA |- FA |- ALt A e
Cs ) 52 5 So

Figure 6  4-bit adder-subtractor.
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The increment micro operation adds one to a number in a register. For example, if a 4-bit register
has a binary value 0110, it will go to 0111 after it is incremented. The diagram of a 4bit
combinational circuit incremented is shown in Fig(7): (HA means Half Adder)

Ay Ay Ay Ao 1

l . j l ‘ 1 l

x ¥ x ¥ X v X y
HA HA HA HA

C S C M) C S C s

Cs 5 $2 Sy So

Figure Fi 4-bit binary Incrementer,

The arithmetic micro operations listed in the Table 3 can be implemented in one composite
arithmetic circuit. The basic component of an arithmetic circuit is the parallel adder. By

controlling the data inputs to the adder, it is possible to obtain different types of arithmetic
operations as shown in Fig (8).
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; Y, Cy
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3

o---{>o—|
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Figure 8 4-bit arithmetic circuit

It is possible to generate the eight arithmetic micro operations listed in Table (4):
TABLE 4  Arithmetic Circuit Function Table

Select
Input Output

S| Se Cin Y DmA+Y+ G, Microoperation
0 0 0 B D=A+8 Add
0 0 1 B D=A+B+1 Add with carry
0 1 0 B D=A+B Subtract with borrow
0 1 1 B D=A+8 +1 Subtract
1 0 0 0 D=A Transfer A
1 0 1 0 D=A+1 Increment A
1 1 0 1 D=A-1 Decrement A
1 i 1 1 D=A Transfer A
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Logic Micro Operations

Logic micro operations specify binary operations for strings of bits stored in registers.
These operations consider each bit of the register separately and treat them as binary variables.
For example, the exclusive-OR micro operation with the contents of two registers Rl and R2 is
symbolized by the statement:

P:R1 < R1 @ R2

It specifies a logic micro operation to be executed on the individual bits of the registers provided
that the control variable P = 1. As a numerical example, assume that each register has four bits.
Let the content of Rl be 1010 and the content of R2 be 1100. The exclusive-OR micro operation
stated above symbolizes the following logic computation:

1010 Content of R1

1100  Content of R2

0110 Content of R1 after P = 1
There are 16 different logic operations that can be performed with two binary variables. They
can be determined from all possible truth tables obtained with two binary variables as shown in
Table (5):

TABLE 5  Truth Tables for 16 Functions of Two Variables

Xy FF E /s, B Fs s iR R F, Fo Fu F: Fy Fu Fy

0
0
1
1

—_——0e O
oo o
- oo o
Do OO
O O
-
—— O
[ == —
—_— T -
L= —
— e LD e
L=~
— O - -
O e e i
el

0
1
0
1

oo - o

The 16 Boolean functions of two variables x and y are expressed in algebraic form in the first
column of Table (6):

TABLE B Sixteen Logic Microoperations

Boolean function Microoperation Name

Fo=0 Fe0 Clear

F, = xy Fe-ANB AND

F; = xy’ Fe—aAANEF

F=x FeA Transfer A
F.=x'y Fe—A NB

Fs=y F«B Transfer B
Fo=x®y F+A®DB Exclusive-OR
Fr=x+y Fe A/ B OR

F=(x +y) F—AEB NOR

F, = (x@y)’ Fe—AGH Exclusive-NOR
Fypo =y’ F«F Complement B
Fu=x+y’ F*——AVE
Fo=x' FeA Complement A
Fia=x"4+y Fe—A \vB

Fye = (xy)' F—ANB NAND

Fis=1 Fe-all1's Settoall 1's
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The diagram shows (Fig 9-a) one typical stage with subscript i. For a logic circuit with n bits,
the diagram must be repeated n times for i = 0,1, 2,..., n - 1. The selection variables are applied
to all stages. The function table in Fig.(9-b) lists the logic micro operations obtained for each
combination of the selection variables.

| rEo—
So —4
4x1
MUX
Aj J
B D—O St So| Ourpue Operation
b-_[>_J [ E 0 0| EearB|AND
1
0 1 E=AvE | OR
’A)D—ﬂz I 0| E=A®B| xOR
I
! 1| E=A Complement
[ 3
(b) Function table
(a) Logic diagram

Figure g  One scage of logic circuit.

Shift Micro operations
Shift micro operations are used for serial transfer of data. The contents of a register can
be shifted to the left or the right. There are three types of shifts: logical, circular, and arithmetic.

The symbolic notation for the shift micro operations is shown in Table (7):
TABLE 7 Shift Microoperations

Symbolic designation Description
R<«shl R Shift-left register R
ReshrR Shift-right register R
R «cil R Circular shift-left register R
R «cir R Circular shift-right register R
R «ashl R Arithmetic shift-left R
R «ashr R Arithmetic shift-right R

An arithmetic shift is a micro operation that shifts a signed binary number to the left or
right. The arithmetic shift-left inserts a O into Ry, and shifts all other bits to the left. The initial
bit of Rn.; is lost and replaced by the bit from R, . A sign reversal occurs if the bit in Rp;
changes in value after the shift and caused an overflow.

The arithmetic shift-right leaves the sign bit unchanged and shifts the number (including the sign
bit) to the right.

- Rn -1 Rn -2 S — R 1 Ry
Sign
bit Arithmetic shift right.
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Ex: If the content of 8 bits register is (10100011). What is the result of the operation after
executing to the register:

a. shl R: shift left register by 3. b. cil R : circular shift left register by 3.

c. ashl R: arithmetic shift left register by 3. d. ashr R: arithmetic shift right register by 3.
Ans:

(a) 00011000.  (b) 00011101. (c) 00011000. Overflow  (d) 11110100

A combinational circuit shifter can be constructed with multiplexers as shown in Fig (10).
The 4-bit shifter has four data inputs, Ao through As, and four data outputs, Ho through Hs. There
are two serial inputs, one for shift left (1) and the other for shift right (Ir).

Select
. 0 for shift night (down)
Senal :
input (/g) 1 for shift left (up)
A
0o MUX |—H,
1
Ao
A | —— S
Function table
o MUX e
Az 1 Select Output
S Hy H, Hy Hy
Ay —
s 0 Ie Ay Ay Az
o MUX —H; 1 A M A I
I
S
0 MUX = Hy
1
_Seral Figure 10  4-bit combinational circuit shifter.
input (/p)

Arithmetic Logic Shift Unit

Computer systems employ a number of storage registers connected to a common
operational unit called an arithmetic logic unit, abbreviated ALU. The arithmetic, logic, and shift
circuits introduced in previous sections can be combined into one ALU with common selection
variables. One stage of an arithmetic logic shift unit is shown in Fig (11) with the functional
table(8):
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$
RV
C;
D,
[0 |
E,
shr
‘Gol .
Figure 11  One stage of arithmetic logic shift unit.
TABLE 8 Function Table for Arithmeric Logic Shift Unit
Operation select
$ S5 85 &% G Operation Function
0 0 0 0 0 F=A Transfer A
0 0 0 0 1 F=A+1 Increment A
0 0 0 1 0 F=A+8 Addition
0 0 0 1 1 F=A+B+1 Add with carry
0 0 1 0 0 F=A+B Subtract with borrow
0o 0 1 (1] 1 F=A+B +1 Subtraction
0 0 1 1 0 F=4-1 Decrement A
0 0 1 1 1 F=A Transfer A
0 1 0 0 x F=AANB AND
0 1 0 1 X F=AVYB OR
0 1 1 0 x F=A®B XOR
0 1 1 1 x F=A Complement A
1 0 x X x F = shr A Shift right A into F
1 1 X X x F=shlA Shift left A into F
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The way that the interrupt is handled by the computer can be explained by means of the flowchart
of Fig(19). An interrupt flip-flop R is included in the computer.

Instruction cycle =0 RA= 1 Interrupt cycle

A

Y

Feich and tqecodc Stare return address
S in location 0
M [0} & PC

|

Execute
mstruction
Branch to location |
PC 1
IEN « 0
R«0

Re1l

r 1  § } r

Figure 19  Flowchart for interrupt cycle.

Design of Basic Computer
The basic computer consists of the following hardware components:
. A memory unit with 4096 words of 16 bits each
. Nine registers: AR, PC, DR, AC, IR, TR, OUTR, INPR, and SC
. Seven flip-flops: I, S, E, R, IEN, FGI, and FGO
. Two decoders: a 3 x 8 operation decoder and a 4 x 16 timing decoder
. A 16-bit common bus
. Control logic gates
. Adder and logic circuit connected to the input of AC The outputs of the control logic circuit
are:

1. Signals to control the inputs of the nine registers

2. Signals to control the read and write inputs of memory

3. Signals to set, clear, or complement the flip-flops

4. Signals for Sy, S1, and Sy to select a register for the bus

5. Signals to control the AC adder and logic circuit.

~N o OB WDN
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Design of Accumulator Logic
The circuits associated with the AC register are shown in Fig(20). The adder and logic
circuit has three sets of inputs.

16
I6 ] Adder and 16 Accumulator 16
From DR =l logic e register e
circuit (AC) To bus
From INPR ="
A

LD INR CLR | Clock

Control
gates

Figure 20 Circuits associated with AC.

In order to design the logic associated with AC, it is necessary to go over the register transfer
statements and extract all the statements that change the content of AC.

AC «AC N DR AND with DR
AC<«AC + DR Add with DR

AC « DR Transfer from DR
AC(0-7) <« INPR Transfer from INPR
AC«AC Complement

AC «shr AC, AC(15)«-E  Shift right
AC «shl AC, AC(0)«E Shift left
AC«0 Clear
AC+AC +1 Increment

Control Memory

The function of the control unit in a digital computer is to initiate sequences of
microoperations. The number of different types of microoperations that are available in a given
system is finite. A control unit whose binary control variables are stored in memory is called a
microprogrammed control unit. Each word in control memory contains within it a
microinstruction. The microinstruction specifies one or more microoperations for the system. A
sequence of microinstructions constitutes a microprogram.
A computer that employs a microprogrammed control unit will have two separate memories: a
main memory and a control memory. The main memory is available to the user for storing the
programs. The contents of main memory may alter when the data are manipulated and every
time that the program is changed. The user's program in main memory consists of machine
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Instructions and data. While the control memory holds a fixed microprogram that cannot be
altered by the occasional user.

The general configuration of a microprogrammed control unit is demonstrated in the block
diagram of Fig(21).

Control
——

External Next -
Control Control Control i

. e
Input addrejs »| address »| memory - data
gencmy register (ROM) register

(sequencer)
Next-address information

Figure 21 Microprogrammed control organization.

Address Sequencing

Microinstructions are stored in control memory in groups, with each group routine
specifying a routine. An initial address is loaded into the control address register when power is
turned on in the computer. This address is usually the address of the first microinstruction that
activates the instruction fetch routine. The fetch routine may be sequenced by incrementing the
control address register through the rest of its microinstructions.

In summary, the address sequencing capabilities required in a control memory are:

1. Incrementing of the control address register.

2. Unconditional branch or conditional branch, depending on status bit conditions.

3. A mapping process from the bits of the instruction to an address for control memory.
4. A facility for subroutine call and return.

Instruction format:

The computer instruction format is depicted in Fig(22-a). It consists of three fields: a 1bit
held for indirect addressing symbolized by J, a 4-bit operation code (opcode), and an 11bit
address field. Fig(22-b) lists four of the 16 possible memory-reference instructions.

15 14 it 10 0
I Opcode Address
(a) Instruction format

Symbol Opcode Description
ADD 0000 AC « AC + M [EA)
BRANCH 0001 If (AC < 0) then (PC « EA)
STORE 0010 M [EA) « AC
EXCHANGE 0011 AC ¢ M[EA], M[EA)] « AC

EA is the effective address
(b) Four computer instructions
Figure 22 Computer instructions.
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Microinstruction Format

The microinstruction format for the control memory is shown in Fig(23). The format 20
bits of the microiristruction are divided into four functional parts. The three fields Fl, F2, and
F3 specify microoperations for the computer. The CD field selects status bit conditions. The BR
field specifies the type of branch to be used. The AD field contains a branch address. The address
field is seven bits wide, since the control memory has 128 = 27 words.

The microoperations are subdivided into three fields of three bits each. The three bits in each
field are encoded to specify seven distinct microoperations as listed in Table (13). This gives a
total of 21 microoperations.

The CD (condition) field consists of two bits which are encoded to specify four status bit
conditions as listed in Table. The first condition is always a 1, so that a reference to CD = 00 (or
the symbol U) will always find the condition to be true. When this condition is used in
conjunction with the BR (branch) field, it provides an unconditional branch operation. The
indirect bit | is available from bit 15 of DR after an instruction is read from memory. The sign
bit of AC provides the next status bit.

3 3 3 2 2 7
Fl F2 F3 CD BR AD

F1, F2, F3: Microoperation fields
CD: Condition for branching
BR: Branch field
AD: Address field

Figure 23 Microinstruction code formar (20 bics).

TABLE 13 Symbols and Binary Code for Microinstruction Fields

F1 Microoperation Symbol F2 Microoperation Symbol F3 Microoperation Symbol
000  None NOP 000  None NOP 000  None NOP
01 AC«AC+DR ADD 001 AC«<AC-DR SUB 01 AC+—AC®DR XOR
010 AC+0 CLRAC 010 AC«ACVYDR OR 010 AC+AC COM
011 AC«AC+1 INCAC 011 AC«~ACADR AND 011 ACeshl AC SHL
100 AC«DR DRTAC 100 DR «M[AR] READ 100 ACe«shr AC SHR
101  AR«DR(0-10) DRTAR 101 DR«AC ACTDR | 101 PC«PC+1 INCPC
110 AR«PC PCTAR 110 DR«DR +1 INCDR 110 PC+AR ARTPC
111  M[AR]«DR WRITE 111  DR(0-10) «PC PCTDR 111 Reserved
BR  Symbol Function

CD Condition Symbol Comments o i gﬁ :ggR'f:or ?f";g:: diti:m =0

00 Always = 1 U Unconditional branch 01 CALL CAR «AD, SBR «CAR + 1 if condition = 1

01  DR(15) I Indirect address bit CAR «CAR + 1 if condition = 0

10 AC(15) S Sign bit of AC 10 RET CAR «SBR (Return from subroutine)

11 AC=0 2 Zero value in AC 11 MAP CAR(2-5) < DR(11~14), CAR(0,1,6) <0
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Design of Control Unit

The Fig(24) shows the three decoders and some of the connections that must be made
from their outputs. Each of the three fields of the microinstruction presently available in the
output of control memory are decoded with a 3x8 decoder to provide eight outputs. For example,
when Fl = 101 (binary 5), the next clock pulse transition transfers the content of DK(0-10) to
AR (symbolized by DRTAR in Table). Similarly, when Fl = 110 (binary 6) there is a transfer
from PC to AR (symbolized by PCTAR).

Fl F2 F3
3 x 8 decoder 3 x 8 decoder 3 x 8 decoder
76543210 76543210 76543210
AR RERRER IRER2AER
AND
ADD =
DRTAC ] Arithmetic
logic shift
unit
E E From From
¥ "Q‘ PC DR (0~ 10) Load Y

AC <t

|

0 1

Select

Multiplexers

i
Load )
‘ AR Clock

Figure 24 Decoding of microoperation fields.

Central Processing Unit
The CPU is made up of three major parts, as shown in Fig(25).
1- The register set stores intermediate data used during the execution of the instructions. The
arithmetic
2- logic unit (ALU) performs the required microoperations for executing the instructions.
3- The control unit supervises the transfer of information among the registers and instructs
the ALU as to which operation to perform.
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Figure 25 Major components of CPU.

General Reqgister Organization

The memory locations are needed for storing pointers, counters, return addresses,

temporary results, and partial products during multiplication. A bus organization for seven CPU
registers is shown in Fig(26):

Cock Topu

{

Rl

R3
R4
RS
R6

| REERER

Load [ —_— e
(Thines})  SELA{ — MUX MUX -— }sm.a
l. - —-—
N
::ﬂﬁ' A by B us
‘SE—I.U‘ { —]
g it}
{ Arithmetic logic unit
ol £ (ALY
(2) Block diagram

Output

3 3 3 S
[ seea | ses |sep | oer |

(b) Control word
Figure 26 Register ser with common ALU.

The control unit that operates the CPU bus system directs the information flow through

the registers and ALU by selecting the various components in the system. For example, to
perform the operation:
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R1 < R2 + R3

The control must provide binary selection variables to the following selector inputs:

1. MUX A selector (SELA): to place the content of R2 into bus A.

2. MUX B selector (SELB): to place the content of R3 into bus B.

3. ALU operation selector (OPR): to provide the arithmetic addition A + B.

4. Decoder destination selector (SELD): to transfer the content of the output bus into RI. To
achieve a fast response time, the ALU is constructed with high-speed circuits.

There are 14 binary selection inputs in the unit, and their combined value control word specifies

a control word. The three bits of SELA select a source register for the A input of the ALU. The

three bits of SELB select a register for the B input of the ALU. The three bits of SELD select a

destination register using the decoder and its seven load outputs. The five bits of OPR select one

of the operations in the ALU.

The encoding of the register selections is specified in Table(14):

TABLE 14 Encoding of Register Selection Fields

Binary
Code SELA  SELB SELD
000 Input Input None
001 R1 R1 R1
010 R2 R2 R2
011 R3 R3 R3
100 R4 R4 R4
101 R5 R5 R5
110 R6 R6 R6
111 R7 R7 R7

Table(15) OPR field has five bits and each operation is designated with a symbolic name.

TABLE 15 Encoding of ALU Operations

OPR

Select Operation Symbol
00000 Transfer A TSFA
00001 Increment A INCA
00010 Add A + B ADD
00101 Subtract A — B SUB
00110 Decrement A DECA
01000 AND A and B AND
01010 OR Aand B OR
01100 XOR Aand B XOR
01110 Complement A COMA
10000 Shift right A SHRA
11000 Shift left A SHLA
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For example, the subtract microoperation given by the statement:



R1 < R2—R3

The binary control word for the subtract microoperation is 010 011 001 00101 and is obtained as
follows:

Field: SELA SELB SELD OPR
Symbol: R2 R3 R1 SUB
Control word: 010 011 001 00101

Stack Organization

A useful feature that is included in the CPU of most computers is a stack or last-in, firstout
(LIFO) list. The two operations of a stack are the insertion and deletion of items. The operation
of insertion is called push, while the operation of deletion is called pop. In a 64-word stack, the
stack pointer contains 6 bits because 2° = 64,

The push operation is implemented with the following sequence of microoperations:

SP«SP + 1 Increment stack pointer
M([SP} <« DR Write item on top of the stack
If (SP = 0) then (FULL «1) Check if stack is full

EMTY «0 Mark the stack not empty

The pop operation consists of the following sequence of microoperations:

DR «—M[SP] Read item from the top of stack
SP¢=5P — 1 Decrement stack pointer

If (SP = 0) then (EMTY «-1)  Check if stack is empty

FULL «0 Mark the stack not full

Instruction Formats
The format of an instruction is usually depicted in a rectangular box symbolizing the bits
of the instruction as they appear in memory words or in a control register. The bits of the
instruction are divided into groups called fields. The most common fields found in instruction
formats are:
1. An operation code field that specifies the operation to be performed.
2. An address field that designates a memory address or a processor register.
3. A mode field that specifies the way the operand or the effective address is determined. An
example of an accumulator-type organization, the instruction that specifies an arithmetic
addition is defined by an assembly language instruction as:
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TABLE 16 Tabular List of Numerical Example

Addressing Effective  Content
Mode Address of AC
Direct address 500 800
Immediate operand 201 500
Indirect address 800 300
Relative address 702 325
Indexed address 600 900
Register — 400
Register indirect 400 700
Autoincrement 400 700
Autodecrement 399 450

Data Transfer and Manipulation

Most computer instructions can be classified into three categories:
1. Data transfer instructions.
2. Data manipulation instructions.
3. Program control instructions.

Data transfer instructions cause transfer of data from one location to another without changing
the binary information content. The table(17) list the Data transfer instructions:
TABLE 17 Typical Data Transfer Instructions

Name Mnemonic
Load LD
Store ST
Move MOV
Exchange XCH
Input IN
Output ouT
Push PUSH
Pop POP

Data manipulation instructions are those that perform arithmetic, logic, and shift operations.
The data manipulation instructions in a typical computer are usually divided into three basic
types:

1- Arithmetic instructions.

2. Logical and bit manipulation instructions.

3. Shift instructions.
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Reduced Instruction Set Computer (RISC)

An important aspect of computer architecture is the design of the instruction set for the
processor. The instruction set chosen for a particular computer determines the way that machine
language programs are constructed. A computer with a large number of instructions is classified
as a Complex Instruction Set Computer, abbreviated CISC. In the early 1980s, a number of
computer designers recommended that computers use fewer instructions with simple constructs
so they can be executed much faster within the CPU without having to use memory as often.

The RISC (Reduced Instruction Set Computer) type of computer is classified as a reduced
instruction set computer or RISC.

In Summary, The Major Characteristics of CISC Architecture Are:

1. A large number of instructions—typically from 100 to 250 instructions.

2. Some instructions that perform specialized tasks and are used infrequently.

3. A large variety of addressing modes—typically from 5 to 20 different modes.
4. Variable-length instruction formats.

5. Instructions that manipulate operands in memory.

The Major Characteristics of A RISC Processor Are:

1. Relatively few instructions.

2. Relatively few addressing modes.

3. Memory access limited to load and store instructions.
4. All operations done within the registers of the CPU.
5. Fixed-length, easily decoded instruction format.

6. Single-cycle instruction execution.

7. Hardwired rather than microprogrammed control.

Memory Hierarchy

The memory unit is an essential component in any digital computer since it is needed for
storing programs and data. The memory unit that communicates directly with the CPU is called
the main memory. Devices that provide backup storage are called auxiliary memory. They are
used for storing system programs, large data files, and other backup information. Only programs
and data currently needed by the processor reside in main memory. All other information is
stored in auxiliary memory and transferred to main memory when needed. A special very-high-
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speed memory called a cache is sometimes used to increase the speed of processing by making
current programs and data available to the CPU at a rapid rate. Fig(29) shows the Memory
Hierarchy:

Auxiliary memory

Magnetic ;
tapes | ' I_.____ -
IO Ports Kain
Magnetic r—=| Memory
disks I
’—J *
Cache
CPU Memory,

Figure 29 Memory hierarchy in 2 computer system.

Main Memory The main memory is the central storage unit in a computer system. It is a
relatively large and fast memory used to store programs and data during the computer operation.
The principal technology used for the main memory is based on semiconductor integrated
circuits. Integrated circuit RAM chips are available in two possible operating modes:

The static RAM consists essentially of internal flip-flops that store the binary information. The

dynamic RAM stores the binary information in the form of electric charges that are applied to

capacitors.

Associative Memory

Many data-processing applications require the search of items in a table stored in memory.
An assembler program searches the symbol address table in order to extract the symbol's binary
equivalent.

A memory unit accessed by content is called an associative memory or Content
Addressable Memory (CAM). When a word is written in an associative memory is capable of
finding an empty unused location to store the word. When a word is to be read from an
associative memory, the content of the word, or part of the word, is specified. The memory
locates all words which match the specified content and marks them for reading. The block
diagram of an associative memory is shown in Fig (30):

Argument register (4)

t

Key register (K)

Martch
‘ register

TNPUT —

Associative memory
array and logic M

Read et m words

n bits per word

}

Output

Write s

Figure 30  Block diagram of associative memory.
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To illustrate with a numerical example, suppose that the argument register A and the key register
K have the bit configuration shown below. Only the three left most bits of A are compared with
memory words because K has I's in these positions.

A 101 111100

K 111 000000

Word 1 100 111100 no match
Word 2 101 000001 match

Word 2 matches the unmasked argument field because the three leftmost bits of the argument
and the word are equal.

Cache Memory

If the active portions of the program and data are placed in a fast small memory, the
average memory access time can be reduced, thus reducing the total execution time of the
program. Such a fast small memory is referred to as a cache memory. It is placed between the
CPU and main memory.

The basic operation of the cache is as follows. When the CPU needs to access memory,
the cache is examined. If the word is found in the cache, it is read from the fast memory. If the
word addressed by the CPU is not found in the cache, the main memory is accessed to read the
word. The performance of cache memory is frequently measured in terms of a quantity called
hit ratio. When the CPU refers to memory and finds the word in cache, it is said to produce a
hit. If the word is not found in cache, it is in main memory and it counts as a miss.

Three types of mapping procedures are of practical interest when considering the
organization of cache memory:

1. Associative mapping

2. Direct mapping

3. Set-associative mapping

Virtual Memory

Virtual memory is a concept used in some large computer systems that permit the user to

construct programs as though a large memory space were available, equal to the totality of
auxiliary memory. Virtual memory is used to give programmers the illusion that they have a very
large memory at their disposal (- <), even though the computer actually has a relatively small
main memory. A virtual memory system provides a mechanism for translating program
generated addresses into correct main memory locations.
As an illustration, consider a computer with a main-memory capacity of 32K words (K = 1024).
Fifteen bits are needed to specify a physical address in memory since 32K = 2%°, Suppose that
the computer has available auxiliary memory for storing 22° = 1024K words. Thus auxiliary
memory has a capacity for storing information equivalent to the capacity of 32 main memories.
Denoting the address space by N and the memory space by M, we then have for this example N
= 1024K and M = 32K.
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The mapping table may be stored in a separate memory as shown in Fig (31) or in main
memory. In the first case, an additional memory unit is required as well as one extra memory
access time. In the second case, the table takes space from main memory and two accesses to
memory are required with the program running at half speed.

Virtual address

o
Virtual Main memory
address Memory address Main
register mapping register memory
(20 bits) table (15 bits)
Main memory
Memory table buffer register

buffer register

Figure 31 Memory table for mapping a virtual address.

The table implementation of the address mapping is simplified if the information in the
address space and the memory space are each divided into groups of fixed size. The physical
memory is broken down into groups of equal size pages and blocks called blocks, which may
range from 64 to 4096 words each. The term page refers to groups of address space of the same
size. For example, if a page or block consists of IK words, then, using the previous example,
address space is divided into 1024 pages and main memory is divided into 32 blocks.

The organization of the memory mapping table in a paged system is shown in Fig(32).
The memory-page table consists of eight words, one for each page. The address in the page table
denotes the page number and the content of the word gives the block number where that page is
stored in main memory. The table shows that pages 1, 2, 5, and 6 are now available in main
memory in blocks 0, 1, 2, and 3, respectively. A presence bit in each location indicates whether
the page has been transferred from auxiliary memory into main memory. Ay in the presence bit
indicates that this page is not available in main memory.

Page no. Line number
[1 0101 0101001 1| Virtual address
Table Presence
address bit
000 0 Main memory
001 1 I Block 0
oi0| oo |1 Y Block |
o011 0 [ o1 [ o101010011 Block 2
100 0 Main memory Block 3
101 o1 1 address register
mo| 1w |1
11 0 AR
I o1 :D Figure 32  Memory table in a paged system,

Memory page table
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Memory Management Hardware

A memory management system is a collection of hardware and software procedures for
managing the various programs residing in memory. The memory management software is part
of an overall operating system available in many computers.

The basic components of a memory management unit are:
1. A facility for dynamic storage relocation that maps logical memory references into
physical memory addresses.
2. A provision for sharing common programs stored in memory by different users.
3. Protection of information against unauthorized access between users and preventing
users from changing operating system functions.
The fixed page size used in the virtual memory system causes certain difficulties with respect to
program size and the logical structure of programs. It is more convenient to divide programs and
segment data into logical parts called segments.

A segment is a set of logically related instructions or data elements associated with a given
name. Segments may be generated by the programmer or by the operating system. Examples of
segments are a subroutine, an array of data, a table of symbols, or a user's program. The address
generated by a segmented program is called a logical address. The logical address may be larger
than the physical memory address as in virtual memory, but it may also be equal, and sometimes
even smaller than the length of the physical memory address.

Numerical Example: A numerical example may clarify the operation of the memory
management unit. Consider the 20-bit logical address specified in Fig(33-a). This configuration
allows each segment to have any number of pages up to 256. The smallest possible segment will
have one page or 256 words. The largest possible segment will have 256 pages, for a total of
256 x 256 = 64K words. The physical memory shown in Fig(33-b).

Paging splits the address space into equal sized units called pages.

While segmentation splits the memory into unequal units that may have sizes more meaningful or
appropriate to the program.

4 3 8
Segment Page Word

(3) Logical address format: 16 segments of 256 pages each,
cach page has 256 words

12 8

LA, Block Word

(b) Physical address format: 4096 blocks of 256 words each,
each word has 32 bits

W% 3
Physical memory

Figure 33 An example of logical and physical addresses.

Consider a program loaded into memory that requires five pages. The operating system may
assign to this program segment 6 and pages 0 through 4, as shown in Fig(34-a). The total logical
address range for the program is from hexadecimal 60000 to 604FF. The correspondence
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between each memory block and logical page number is then entered in a table as shown in
Fig(34-b).

Hexadecimal

address Page number

60000 Page 0 Segment  Page Block
60100 Page 1 6 00 012

[ 01 000
0200 Page 2 6 02 019
60300 Page 3 6 03 053
60400 P 6 04 A6l
604FF nge ¢

A (b) Segment-page versus
(a) Logical address assignment " memory block assignment

Figure 34  Example of logical and physical memory address assignment.

The information from this table is entered in the segment and page tables as shown in  Fig(35-
a). Now consider the specific logical address given in Fig(35). The 20-bit address is listed as a
five-digit hexadecimal number. It refers to word number 7E of page 2 in segment 6. The base of
segment 6 in the page table is at address 35. Segment 6 has associated with it five pages, as
shown in the page table at addresses 35 through 39. Page 2 of segment 6 is at address 35 + 2 =
37. The physical memory block is found in the page table to be 019. Word 7E in block 19 gives
the 20-bit physical address 0197E. Note that page 0 of segment 6 maps into block 12 and page
1 maps into block 0. The associative memory in Fig(35-b) shows that pages 2 and 4 of segment
6 have been referenced previously and therefore their corresponding block numbers are stored
In the associative memory.

Logical address (in haxadecimal)

r 6 ] ” ] 7E I
Segment table Page table Fhysicel ey
o 00 00000
Block 0
O000FF
6 35
35 012
36 000
37 019 01200
Block 12
38 053 O12FF
# =3 39 A6l
01900 .
32-b
O197E it word
A3 012 019EF
l

(2) Segment and page table mapping

Continue
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Segment Page Block

6 02 019

{b) Associative memory (TLB)

Figure 35  Logical to physical memory mapping example
(all numbers are in hexadecimal).

Input-Output Organization

The input-output subsystem of a computer, referred to as 1/0O, provides an efficient mode
of communication between the central system and the outside environment. Programs and data

must be entered into computer memory for processing and results obtained from computations
must be recorded or displayed for the user.

Peripheral Devices

Input or output devices attached to the computer are also called peripherals.

» The display terminal can operate in a single-character mode where all characters entered
on the screen through the keyboard are transmitted to the computer simultaneously. In the

block mode, the edited text is first stored in a local memory inside the terminal. The text
Is transferred to the computer as a block of data.

» Printers provide a permanent record on paper of computer output data.
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» Magnetic tapes are used mostly for storing files of data.
» Magnetic disks have high-speed rotational surfaces coated with magnetic material.

Input-Output Interface

Input-output interface provides a method for transferring information between internal storage
and external 1/O devices. Peripherals connected to a computer need special communication links
for interfacing them with the central processing unit. The major differences are:

1. Peripherals are electromechanical and electromagnetic devices and their manner of
operation is different from the operation of the CPU and memory, which are electronic
devices. Therefore, a conversion of signal values may be required.

2. The data transfer rate of peripherals is usually slower than the transfer rate of the CPU,
and consequently, a synchronization mechanism may be needed.

3. Data codes and formats in peripherals differ from the word format in the CPU and
memory.

4. The operating modes of peripherals are different from each other and each must be
controlled so as not to disturb the operation of other peripherals connected to the CPU.

A typical communication link between the processor and several peripherals is shown in Fig.36.
The 1/0 bus consists of data lines, address lines, and control lines. The magnetic disk, printer,
and terminal are employed in practically any general-purpose computer. The interface selected
responds to the function code and proceeds to execute it. The function code is referred to as an
I/0 command and is in essence an instruction that is executed in the interface and its attached
peripheral unit.

There are three ways that computer buses can be used to communicate with memory and 1/O:

1. Use two separate buses, one for memory and the other for 1/0.

2. Use one common bus for both memory and 1/0O but have separate control lines for each.

3. Use one common bus for memory and I/0O with common control lines.

1/0 bus
Data
Processor Address
T Control
Interface Interface Interface interface
displey o disk tape
terminal

Figure 36 Connection of O bus to input-output devices.

Isolated 1/O versus Memory-Mapped 1/O

Many computers use one common bus to transfer information between memory or 1/O and the
CPU. In the isolated 1/0O configuration, the CPU has distinct input and output instructions, and
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each of these instructions is associated with the address of an interface register. The isolated 1/0
method isolates memory and 1/O addresses so that memory address values are not affected by
interface address assignment since each has its own address space. The other alternative is to
use the same address space for both memory and 1/0O.

Bidirectional EE— Port A /0 data
~ Bus — register : %
data bus buffers
| Port B /0 data
Chip select . -
RS register
RS! é
Register select - - Control Control
RSO Timing £ T register
9
1/0 read and £
rea control
RO age, Status Status
. et
5 register
t
10 write WR
=T CPU To 1/0 device =

CS RSI RSO | Register selected

0 X x None: data bus in high-impedance

1 0 Port A register

0
o 1 Port B register
1 1 0 Control register

1 | 1 Status register

Figure 37  Example of /O interface unit.

This is the case in computers that employ only one set of read and write signals and do
not distinguish between memory and I/O addresses. This configuration is referred to as memory
mapped 1/O. In a memory-mapped 1/O organization there is no specific input or output
instructions. Computers with memory-mapped I/O can use memory-type instructions to access
I/0 data.

An example of an 1/O interface unit is shown in block diagram form in Fig.37. It consists
of two data registers called ports, a control register, a status register, bus buffers, and timing and
control circuits. The interface communicates with the CPU through the data bus. The chip select
and register select inputs determine the address assigned to the interface. The 1/O read and write
are two control lines that specify an input or output, respectively. The four registers
communicate directly with the 1/O device attached to the interface.

Asynchronous Data Transfer

The internal operations in a digital system are synchronized by means of clock pulses supplied

by a common pulse generator. If the registers in the interface share a common clock with the

CPU registers, the transfer between the two units is said to be synchronous. In most cases, the

internal timing in each unit is independent from the other in that each uses its own private clock

for internal registers. In that case, the two units are said to be asynchronous to each other. This
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approach is widely used in most computer systems. Asynchronous data transfer between two
independent units requires that control signals be transmitted between the communicating units
to indicate the time at which data is being transmitted. Two way of achieving this:

» The strobe: pulse supplied by one of the units to indicate to the other unit when the transfer
has to occur.

» The handshaking: The unit receiving the data item responds with another control signal to
acknowledge receipt of the data.

The strobe pulse method and the handshaking method of asynchronous data transfer are not
restricted to 1/O transfers.

The strobe may be activated by either the source or the destination unit. Figure 38 shows a
source-initiated transfer and the timing diagram.

Data bus

Source Destination
unit Strobe unit

(a) Block diagram

Data «— Valid data —»

Strobe

(b) Timing diagram
Figure 38  Source-initiated strobe for data transfer.

Fig.39 shows the strobe of a memory-read control signal from the CPU to a memory.

Data bus

L

Source > | Destination
unit < Strobe unit
(a) Block diagram
Data ~+— Valid data —»

Strobe

(b) Timing diagram
Figure 39 Destination-initiated strobe for data transfer.

The disadvantage of the strobe method is that the source unit that initiates the transfer has no
way of knowing whether the destination unit has actually received the data item that was placed
in the bus. The handshake method solves this problem by introducing a second control signal
that provides a reply to the unit that two-wire control initiates the transfer.

Figure 40 shows the data transfer procedure when initiated by the source. The two handshaking
lines are data valid, which is generated by the source unit, and data accepted, generated by the
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destination unit. The timing diagram shows the exchange of signals between the two units.
Figure 41 the destination-initiated transfer using handshaking lines. Note that the name of the
signal generated by the destination unit has been changed to ready for data to reflect its new
meaning.

Asynchronous Serial Transfer

The transfer of data between two units may be done in parallel or serial. In parallel data
transmission, each bit of the message has its own path and the total message is transmitted at the
same time. This means that an w-bit message must be transmitted through n separate conductor
paths. In serial data transmission, each bit in the message is sent in sequence one at a time. This
method requires the use of one pair of conductors or one conductor and a common ground.
Parallel transmission is faster but requires many wires. It is used for short distances and where
speed is important. Serial transmission is slower but is less expensive since it requires only one
pair of conductors. Serial transmission can be synchronous or asynchronous. A transmitted
character can be detected by the receiver from knowledge of the transmission rules:

1. When a character is not being sent, the line is kept in the 1-state.

2. The initiation of a character transmission is detected from the start bit, which is always(0).

3. The character bits always follow the start bit.

4. After the last bit of the character is transmitted, a stop bit is detected when the line returns
to the 1-state for at least one bit time.

46



Modes of Transfer
Data transfer between the central computer and 1/O devices may be handled in a variety of
modes. three possible modes:

1. Programmed I/O: The operations are the result of 1/O instructions written in the computer
program. Each data item transfer is initiated by an instruction in the program. The CPU
stays in a program loop until the I/O unit indicates that it is ready for data transfer. This
IS a time-consuming process since it keeps the processor busy needlessly. An example of
data transfer from an 1/O device through an interface into the CPU is shown in Fig. 43.

Interface
. Data bus < JObus

Address bus Data register

. __ Data vald 10

- Ao - device

O wre = s F Data accepted

E register -~

F = Flag bit

Figure 43 Data transfer from [/O device to CPU.

2. Interrupt-initiated 1/0: It can be avoided by using an interrupt facility and special
commands to inform the interface to issue an interrupt request signal when the data are
available from the device. In the meantime the CPU can proceed to execute another
program. This method of connection between three devices and the CPU is shown in Fig.

Processor data bus
VAD | VAD 2 VAD 3
Device | Device 2 Device 3 5
—~ Pl PO Pr PO Bl PO [ NN

Interrupt request
INT

CPU

Interrupt acknowledge
INTACK

Figure 44  Daisy-chain priority interrupt.

3. Direct memory access (DMA): the interface transfers data into and out of the memory unit
through the memory bus. The CPU initiates the transfer by supplying the interface with
the starting address and the number of words needed to be transferred and then proceeds
to execute other tasks. This method of connection between devices and the memory is

shown in Fig. 45.
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Central processing

unit (CPU)
i Peripheral devices
Memory unit  fet—a=—| 3
é
PRy Input-output \
7| processor (IOP) 1/0 bus
Figure 45 Block diagram of a computer with I/O processor.
Pipelining

Pipelining is a technique of decomposing a sequential process into sub-operations; with each
sub-process being executed in a special dedicated segment that operates concurrently with
all other segments. A pipeline can be visualized as a collection of processing segments
through which binary information flows.

General Considerations

Any operation that can be decomposed into a sequence of sub-operations of about the same
complexity can be implemented by a pipeline processor. The general structure of a
foursegment pipeline is illustrated in Fig. 46. The operands pass through all four segments

in a fixed sequence.

Clock

Input

S

Sz

Figure 46

Ss

Four-segment pipeline.

Sa

The space-time diagram of a four-segment pipeline is demonstrated in Fig47.

Segment: 1

The speedup(S) of a pipeline processing over an equivalent non-pipelin

defined by the ratio:

# Clock cycles

S =

nty

50

(k+n-1)t,

1 2 3 4 5 6 7 8
T T, Ty T, Ts Tg
T T, Ty Ts Ts Tg
T T T3 I Ts | Ts
Ty T Ty Ty | Ts Tg
Figm 47  Space-time diagram for pipeline.
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As the number of tasks increases, n becomes much larger than k — 1, and k + n — 1
approaches the value of n. Under this condition, the speedup becomes:

st

tp
numerical example: Let the time it takes to process a sub-operation in each segment be equal
to t,= 20 ns. Assume that the pipeline has k = 4 segments and executes n = 100 tasks

in sequence. The pipeline system will take
(k+n—1)t,=(4+99) x 20 = 2060ns
to complete. Assuming that t=ktp=4x20=80ns, a
non-pipeline system requires:
nkt,= 100 X 80 = 8000ns

to complete the 100 tasks. The speedup ratio is equal to:

8000 /2060 = 3.88
Instruction Pipeline
The computer needs to process each instruction with the following sequence of steps:

1. Fetch the instruction from memory.
2. Decode the instruction.

3. Calculate the effective address.

4. Fetch the operands from memory.
5. Execute the instruction.

6. Store the result in the proper place.

Figure 48 shows how the instruction cycle in the CPU can be processed with a four-segment
pipeline. While an instruction is being executed in segment 4, the next instruction in sequence
Is busy fetching an operand from memory in segment 3.

The four segments are represented in the flowchart:

1. Fl is the segment that fetches an instruction.

2. DA is the segment that decodes the instruction and calculates the effective address.
3. FO is the segment that fetches the operand.

4. EX is the segment that executes the instruction.
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Scgment 1:

Segment 2:

yes

Segment 3;

Segment 4: [ Execute iostruction ]

Figure 48 Four-segment CPU pipeline.

A pipeline operation is said to have been stalled if one unit (stage) requires more time to perform
its function, thus forcing other stages to become idle. Consider, for example, the case of an
instruction fetch that incurs a cache miss. Assume also that a cache miss requires three extra
time units.

Instruction-Level Parallelism

Contrary to pipeline techniques, instruction-level parallelism (ILP) is based on the idea of
multiple issue processors (MIP). An MIP has multiple pipelined datapaths for instruction
execution. Each of these pipelines can issue and execute one instruction per cycle. Figure 49
shows the case of a processor having three pipes. For comparison purposes, we also show in the
same figure the sequential and the single pipeline case.
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Figure 49  Multiple issue versus pipelining versus sequential processing

Arithmetic Pipeline

Pipeline arithmetic units are usually found in very high speed computers. They are used to
implement floating-point operations, multiplication of fixed-point numbers, and similar
computations encountered in scientific problems.

an example of a pipeline unit for floating-point addition and subtraction. The inputs to the
floating-point adder pipeline are two normalized floating-point binary numbers.

X=Ax2
Y=Bx2

A, B are two fractions that represent the mantissas and a, b are the exponents. The suboperations
that are performed in the four segments are:

1. Compare the exponents.
2. Align the mantissas.
3. Add or subtract the mantissas.
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4. Normalize the result.

Numerical example may clarify the sub-operations performed in each segment. For simplicity,
we use decimal numbers, although Fig.49 refers to binary numbers. Consider the two normalized
floating-point numbers:

X =0.9504 x 10°

Y = 0.8200 x 10?

The two exponents are subtracted in the first segment to obtain(3 — 2 = 1). The larger exponent
3 is chosen as the exponent of the result. The next segment shifts the mantissa of Y to the right
to obtain:

X =0.9504 x 10°
Y = 0.0820 x 10°

This aligns the two mantissas under the same exponent. The addition of the two mantissas in
segment 3 produces the sum:

Z =1.0324 x 10?
Wﬂ: Aml
R {4
| Adine] [ ]
i
Segment 1: Ww :
{
I ’ |
\
Segment 2: [ Chooss expooent l [ Aﬁgpmj
el ]
Y
Segment 3: S
1
e X | [ |
1 i
{ 1
RS | l & |
: Y

Figure 49 Pipeline for floating-point addition and subtraction.
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Suppose that the time delays of the four segments are t1 = 60ns, t2 = 70ns, t3 = 100ns, t4s =
80ns, and the interface registers have a delay of t,= 10ns. The clock cycle is chosen to be t,
= t3+ t-= 110ns. An equivalent non-pipeline floating point adder-subtractor will have a delay
time to=t1+ t2+ t3+ ta+ t-= 320ns. In this case the pipelined adder has a speedup of 320/110
= 2.9 over the non-pipelined adder.

Supercomputers

Supercomputers are very powerful, high-performance machines used mostly for scientific
computations. To speed up the operation, the components are packed tightly together to
minimize the distance that the electronic signals have to travel. Supercomputers also use special
techniques for removing the heat from circuits to prevent them from burning up because of their
close proximity.

A supercomputer is a computer system best known for its high computational speed, fast and
large memory systems, and the extensive use of parallel processing.

Delayed Branch
Consider now the operation of the following four instructions:

1. LOAD: R1<M/[address 1]
2. LOAD: R2<«M|[address 2]
3. ADD: R3«R1+R2

4. STORE: MJ[address 3] <R3

If the three-segment pipeline proceeds: (I: Instruction fetch, A:ALU operation, and E: Execute
instruction) without interruptions, there will be a data conflict in instruction 3 because the
operand in R2 is not yet available in the A segment. This can be seen from the timing of the
pipeline shown in Fig. 50(a). The E segment in clock cycle 4 is in a process of placing the
memory data into R2. The A segment in clock cycle 4 is using the data from R2, but the value
in R2 will not be the correct value since it has not yet been transferred from memory. It is up to
the compiler to make sure that the instruction following the load instruction uses the data fetched
from memory. It was shown in Fig. 50 that a branch instruction delays the pipeline operation by
NOP instruction until the instruction at the branch address is fetched.

Clock cycles: 1121314516
|. Load R1 I1|A|E

2. Load R2 I 1A

3.Add Rl +R2 I {A|E

4. Store R3 I |A|E

(a) Pipeline timing with data conflict
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Clock cycle: 1 314|567
1. Load R1 I|A]E

2. Load R2 1A

3. No-operation I{A

4. Add R1 + R2 I1|A|E

5. Store R3 1|A|E

(b) Pipeline timing with delayed load

Figure 50 Three-segment pipeline timing.

Computer Arithmetic

Arithmetic instructions in digital computers manipulate data to produce results necessary for the
solution of computational problems. An arithmetic processor is the part of a processor unit that
executes arithmetic operations. The data type assumed to reside in processor registers during the
execution of an arithmetic instruction is specified in the definition of the instruction. The solution
to any problem that is stated by a finite number of well-defined procedural steps is called an
algorithm.

Addition and Subtraction with Signed-Magnitude Data: We designate the magnitude of the
two numbers by A and B. When the signed numbers are added or subtracted, we find that there
are eight different conditions to consider, depending on the sign of the numbers and the
operation performed. These conditions are listed in the first column of Table 18. The other
columns in the table show the actual operation to be performed with the magnitude of the
numbers. The last column is needed to prevent a negative zero. In other words, when two equal
numbers are subtracted, the result should be +0 not -0.

TABLE 18 Addition and Subtraction of Signed-Magnitude Numbers

Subtract Magnitudes
Add
Operation Magnitudes When A>B WhenA<B WhenA =8B

(+A) + (+B) +(A + B)

(+A) + (-B) +(A - B) ~(B - A) +(A - B)
(=A) + (+B) ~-(A - B) +(B - A) +(A — B)
(-A)+(-B) —(A+B)

(tA) — (+B) +(A - B) —(B—-A) +(A — B)

(+A) - (-B) +(A+B)
(-A) - (+B) -(A+B)
(-A) - (-B) ~(A - B) +(B - A) +(A - B)
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Hardware Implementation: Let A and B be two registers that hold the magnitudes of the
numbers, and As and Bs be two flip-flops that hold the corresponding signs. Consider now the
hardware implementation of the algorithms above:

1- First, a parallel-adder is needed to perform the microoperation A + B.

2- Second, a comparator circuit is needed to establish if A> B, A=B, or A<B.

3- Third, two parallel-subtractor circuits are needed to perform the microoperations (A-B) and
(B-A).

4- The sign relationship can be determined from an exclusive- OR gate with As and Bs as inputs.

Careful investigation of the alternatives reveals that the use of 2's complement for subtraction
and comparison is an efficient procedure that requires only an adder and a complementer. Figure
51 shows a block diagram of the hardware for implementing the addition and subtraction
operations. It consists of registers A and B and sign flip-flops As and B.. Subtraction is done by
adding A to the 2's complement of B. The output carry is transferred to flip-flop E, where it can
be checked to determine the relative magnitudes of the two numbers. The add-overflow flip-flop
AVF holds the overflow bit when A and B are added.

| B regisier ]

Y

AVF Comptemrenter T*—T— M (Mode control)
!
Y

*—?;‘;y“&{ Paralle) adder ]«—J

Input carry

Ay I A tegister ]«——— Load sum

Figure S1 Hardware for signed-magnitude addition and subtraction.

The adder is equal to the sum A + B. When M = 1, the I's complement of B is applied to the
adder, the input carry is 1, and output S = A + B +1. This is equal to A plus the 2's complement
of B, which is equivalent to the subtraction A - B. The signed 2's complement representation of
numbers together with arithmetic algorithms for addition and subtraction are introduced as: The
leftmost bit of a binary number represents the sign bit: O for positive and 1 for negative. If the
sign bit is 1, the entire number is represented in 2's complement form. Thus +33 is represented
as 00100001 and -33 as 11011111. Note that 11011111 is the 2's complement of 00100001, and
vice versa. The addition of two numbers in signed 2's complement form consists of adding the
numbers with the sign bits treated the same as the other bits of the number. A carry-out of the
sign-bit position is discarded. The subtraction consists of first taking the 2's complement of the
subtrahend and then adding it to the minuend.
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Multiplication Algorithms

Multiplication of two fixed-point binary numbers in signed-magnitude representation is done
with paper and pencil by a process of successive shift and add operations. This process is best
illustrated with a numerical example:

23 10111  Multiplicand
19 x 10011 Multiplier
10111
10111
00000 +
00000
10111
437 110110101 Product

Figure 52 is a flowchart of the hardware multiply algorithm. Initially, the multiplicand is in B
and the multiplier in Q. Their corresponding signs are in Bs and Qs, respectively. The signs are
compared, and both A and Q are set to correspond to the sign of the product since a
doublelength product will be stored in registers A and Q. Registers A and E are cleared and the
sequence counter SC is set to a number equal to the number of bits of the multiplier.

Multiply operation

Multiplicand in B
Multiplier in Q

|eaavp

END
(product is in AQ)

Figure 52 Flowchart for multiply operation.

The numerical example is repeated to clarify the hardware multiplication process. It operates on

the fact that strings of 0's in the multiplier require no addition but just shifting, while string of
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1's in the multiplier require addition with shifting. The table 19 illustrate numerical example for
multiplier 23 (which in binary equal 10111) by 19 (which binary equal 10011) gives the result

437(in binary equal 0110110101).

TABLE 19 Numerical Example for Binary Multiplier

]

Multiplicand B = 10111 E A Q SC
Multiplier in Q 0 00000 10011 101
Q. = 1; add B 10111
First partial product 0 10111
Shift right EAQ 0 01011 11001 100
Q.=1;add B 10111
Second partial product 1 00010
Shift right EAQ 0 10001 01100, 011
Q. = 0; shift right EAQ 0 01000 10110 010
Q. = 0; shift right EAQ 0 00100 01011 001
Q.= 1;add B 10111
Fifth partial product 0 11011
Shift right EAQ 0 01101 10101 000

Final product in AQ = 0110110101

Division Algorithms

Division of two fixed-point binary numbers in signed-magnitude representation is done with
paper and pencil by a process of successive compare, shift, and subtract operations. Binary
division is simpler than decimal division because the quotient digits are either 0 or 1 and there
IS no need to estimate how many times the dividend or partial remainder fits into the divisor.
The division process is illustrated by a numerical example in Figure 52.

Divisor:
B = 10001

11010

0111000000
01110
011100
-10001

-010110
--10001

--001010
---010100
----10001

----000110

Figure 52

Quotient = Q

Dividend = 4

S bits of A < B, quotient has 5 bits

6 bitsof 4 > B

Shift right B and subtract: enter 1 in Q

7 bits of remainder > B
Shift right B and subtract; enter 1 in Q

Remainder < B; enter 0 in Q; shift right B
Remainder > B
Shift right B and subtract; enter 1 in Q

Remainder < B;enter 0 in Q
Final remainder

Example of binary division.

The hardware for implementing the division operation is identical to that required for
multiplication and consists of the components Register EAQ is now shifted to the left with 0
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inserted into Q, and the previous value of E lost. The numerical example is repeated as in Figure
53:

Divisor B = 10001, B+1=01111
E A Q §C

e, F t— P, pu—
Dividend: 01110 00000 5
shl EAQ 0 11100 00000
add B + 1 01111
E=1 1 01011
SetQ, =1 1 01011 00001 4
shl EAQ 0 10110 00010
Add B +1 01111
E=1 1 00101
SetQ, =1 1 00101 00011 3
shl EAQ 0 01010 00110
Add B + 1 01111
E=0;leave 0, =0 0 11001 00110
Add B 10001 5
Restore remainder 1 01010
shl EAQ 0 10100 01100
Add B +1 01111
E=1 1 00011
SetQ, =1 1 00011 01101 1
shl EAQ 0 00110 11010
AddB + 1 01111
E=0;leave Q, =0 0 10101 11010
Add B 10001
Restore remainder 1 00110 11010 0
Neglect £
Remainderin4: 00110
Quotient in Q: 11010

Figure 53 Example of binary division with digital hardware.

Decimal Arithmetic Unit

To perform arithmetic operations with decimal data, it is necessary to convert the input decimal
numbers to binary, to perform all calculations with binary numbers, and to convert the results
into decimal. It can add or subtract decimal numbers, usually by forming the 9's or 10's
complement of the subtrahend. Consider the arithmetic addition of two decimal digits in BCD,
together with a possible carry from a previous stage. To add 0110 to the binary sum, we use a
second 4-bit binary adder as shown in Fig. 54. The two decimal digits, together with the
inputcarry, are first added in the top 4-bit binary adder to produce the binary sum. When the
outputcarry is equal to 0, nothing is added to the binary sum.

60



Addend Augend

Bt

-
Carry bit binary adder Ciiiy
out K [

n
L L B %

Qutput
carry

21R; Y ¥

4-bit binary adder

S S S 5
Figure 54  Block diagram of BCD adder.

A straight subtraction of two decimal numbers will require a subtractor circuit that will be
somewhat different from a BCD adder. The 9's complement of a decimal digit represented in
BCD may be obtained by complementing the bits in the coded representation of the digit
provided a correction is included. There are two possible correction methods. In the first method,
binary 1010 (decimal 10) is added to each complemented digit and the carry discarded after
each addition. In the second method, binary 0110 (decimal 6) is added before the digit is
complemented.

By By B; B,

RN

BCD 9's
M —— complementer
Xg Xy X2 X Ay Ay Ax A,
V‘ R l l l l
Cisy —— BCD adder (Fig. 54 ) F—C;
Sg S SZ Sl

Figure 55 One stage of a decimal arithmetic unit.

One stage of a decimal arithmetic unit that can add or subtract two BCD digits is shown in Fig.
55. It consists of a BCD adder and a 9's complementer. The mode M controls the operation of
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the unit. With M = 0, the S outputs form the sum of A and B. With M = 1, the S outputs form
the sum of A plus the 9’s complement of B. For numbers with n decimal digits we need n such
stages. The output carry Ci.1 from one stage must be connected to the input carry C; of the next-
higher-order stage. The best way to subtract the two decimal numbers is to let M = 1 and apply
a 1 to the input carry C; of the first stage. The outputs will form the sum of A plus the 10's
complement of B, which is equivalent to a subtraction operation if the carry-out of the last stage
Is discarded.

As a numerical illustration, the 9's complement of BCD 0111 (decimal 7) is computed by first
complementing each bit to obtain 1000. Adding binary 1010 and discarding the carry, we obtain
0010 (decimal 2). By the second method, we add 0110 to 0111 to obtain 1101. Complementing
each bit, we obtain the required result of 0010. One stage of a decimal arithmetic unit that can
add or subtract two BCD digits is shown in Figure 55. It consists of a BCD adder and a 9's
complementer.

Reduced Instruction Set Computers (RISCs)

The RISC approach is RISC-based machines are reality and they are characterized by a
number of common features such as simple and reduced instruction set, fixed instruction format,
one instruction per machine cycle, pipeline instruction fetch/execute units, ample number of
general purpose registers (or alternatively optimized compiler code generation), Load/Store
memory operations, and hardwired control unit design. While Complex Instruction Set
Computers (CISCs) is became apparent that a complex instruction set has a number of
disadvantages. These include a complex instruction decoding scheme, an increased size of the
control unit, and increased logic delays.

RISCs DESIGN PRINCIPLES

A computer with the minimum number of instructions has the disadvantage that a large
number of instructions will have to be executed in realizing even a simple function. This will
result in a speed disadvantage. The observations about typical program behavior have led to the
following conclusions:

1. Simple movement of data (represented by assignment statements), rather than complex
operations, are substantial and should be optimized.

2. Conditional branches are predominant and therefore careful attention should be paid to
the sequencing of instructions. This is particularly true when it is known that pipelining is
indispensable to use.

3. Procedure calls/return are the most time-consuming operations and therefore a
mechanism should be devised to make the communication of parameters among the calling and
the called procedures cause the least number of instructions to execute.

4.  Aprime candidate for optimization is the mechanism for storing and accessing local scalar
variables.
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The following set of common characteristics among RISC machines is observed:

. Fixed-length instructions

. Limited number of instructions (128 or less)

. Limited set of simple addressing modes (minimum of two: indexed and PC-relative)

. All operations are performed on registers; no memory operations

. Only two memory operations: Load and Store

. Pipelined instruction execution

. Large number of general-purpose registers or the use of advanced compiler technology to
optimize register usage

. One instruction per clock cycle

. Hardwired control unit design rather than microprogramming

~No OB, WDN -

O o

RISCs VERSUS CISCs
Tables 20 show a limited comparison between an example RISC and CISC machine in terms of
characteristics:

TABLE 20 RISC Versus CISC Characteristics

Characteristic (CISC) (RISC)
Number of instructions 303 31
Instruction size (bits) 16-456 32
Addressing modes 22 3
No. general purpose registers 16 138

MULTIPROCESSORS

A multiple processor system consists of two or more processors that are connected in a
manner that allows them to share the simultaneous (parallel) execution of a given computational
task. Parallel processing has been advocated as a promising approach for building high-
performance computer systems. The organization and performance of a multiple processor
system are greatly influenced by the interconnection network used to connect them. On the one
hand, a single shared bus can be used as the interconnection network for multiple processors.

CLASSIFICATION OF COMPUTER ARCHITECTURES
A number of classification schemes have been proposed, these include:

1- the Flynn’s classification (1966).
2- the Kuck (1978).

3- the Hwang and Briggs (1984).
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4- the Erlangen (1981).

5- the Giloi (1983).

6- the Skillicorn (1988). 7- the Bell (1992).
The instruction stream is defined as the sequence of instructions performed by the computer.
The data stream is defined as the data traffic exchanged between the memory and the processing
unit. This leads to four distinct categories of computer architectures:
1. Single-instruction single-data streams (SISD)

2. Single-instruction multiple-data streams (SIMD)
3. Multiple-instruction single-data streams (MISD)
4. Multiple-instruction multiple-data streams (MIMD)

SIMD SCHEMES

Two main SIMD configurations have been used in real-life machines. These are shown in Figure
56.

l Interconnection Network ]

el

Control Unit
‘ ) | P P | IP._. Py I
I Interconnection Network l
‘ M, | M | M, ‘ [ My 2 [ M, |
'.h'
Figure 56 Two SIMD schemes. (@) SIMD scheme 1, () SIMD scheme 2

MIMD SCHEMES

MIMD machines use a collection of processors, each having its own memory, which can be used
to collaborate on executing a given task. In general, MIMD systems can be categorized based
on their memory organization into shared-memory and message-passing architectures.
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h- a message-passing multiprocessor architecture

Figure 57 MIMD Schemes

INTERCONNECTION NETWORKS

The classification of interconnection networks is based on topology. Interconnection networks
are classified as either static or dynamic. In Figure 58, is provide such a taxonomy.

Interconnection Networks
!\

: b
Static Dynamic

by K
ID 2D HC a/ \.
Bus-based Switch-based
{ \ ‘ \
Single Multiple SS MS  Crossbar

Figure 358 A topology-based taxonomy for interconnection networks
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Reduced Instruction Set Computer (RISC)

An important aspect of computer architecture is the design of the instruction set for the
processor. The instruction set chosen for a particular computer determines the way that machine
language programs are constructed. A computer with a large number of instructions is classified
as a complex instruction set computer, abbreviated CISC. In the early 1980s, a number of
computer designers recommended that computers use fewer instructions with simple constructs
so they can be executed much faster within the CPU without having to use memory as often.
This RISC type of computer is classified as a reduced instruction set computer or RISC.

In summary, the major characteristics of CISC architecture are:

1. A large number of instructions—typically from 100 to 250 instructions.

2. Some instructions that perform specialized tasks and are used infrequently.

3. A large variety of addressing modes—typically from 5 to 20 different modes.

4. Variable-length instruction formats.

5. Instructions that manipulate operands in memory.

The major characteristics of a RISC processor are:

1. Relatively few instructions.

2. Relatively few addressing modes.

3. Memory access limited to load and store instructions.

4. All operations done within the registers of the CPU.

5. Fixed-length, easily decoded instruction format.

6. Single-cycle instruction execution.

7. Hardwired rather than microprogrammed control.

Memory Hierarchy

The memory unit is an essential component in any digital computer since it is needed for
storing programs and data. The memory unit that communicates directly with the CPU is called
the main memory. Devices that provide backup storage are called auxiliary memory. They are
used for storing system programs, large data files, and other backup information. Only programs
and data currently needed by the processor reside in main memory. All other information is
stored in auxiliary memory and transferred to main memory when needed. A special very-high-
speed memory called a cache is sometimes used to increase the speed of processing by making
current programs and data available to the CPU at a rapid rate. Fig(29) shows the Memory
Hierarchy:




Auxiliary memory

Magnetic ;
tapes | I,______, -
110 Ports Kali
Magnetic | Memory
disks i i T
._l *
‘ Cache
CPU Memory,

Figure 29 Memory hierarchy in 2 computer system.

Main Memory The main memory is the central storage unit in a computer system. It is a
relatively large and fast memory used to store programs and data during the computer operation.
The principal technology used for the main memory is based on semiconductor integrated
circuits. Integrated circuit RAM chips are available in two possible operating modes:

The static RAM consists essentially of internal flip-flops that store the binary information. The

dynamic RAM stores the binary information in the form of electric charges that are applied to

capacitors.

Associative Memory

Many data-processing applications require the search of items in a table stored in memory.
An assembler program searches the symbol address table in order to extract the symbol's binary
equivalent.

A memory unit accessed by content is called an associative memory or content
addressable memory (CAM). When a word is written in an associative memory is capable of
finding an empty unused location to store the word. When a word is to be read from an
associative memory, the content of the word, or part of the word, is specified. The memory
locates all words which match the specified content and marks them for reading. The block
diagram of an associative memory is shown in Fig(30):

Argument register (4)
Key register (K)
Match
' register
TNPUT —
Associative memory
armay and logic M
Read e m words
Write n bits per word

Output
Figure 30  Block diagram of associative memory,



To illustrate with a numerical example, suppose that the argument register A and the key register
K have the bit configuration shown below. Only the three left most bits of A are compared with
memory words because K has I's in these positions.

A 101 111100

K 111 000000

Word 1 100 111100 no match
Word 2 101 000001 match

Word 2 matches the unmasked argument field because the three leftmost bits of the argument
and the word are equal.

Cache Memory

If the active portions of the program and data are placed in a fast small memory, the
average memory access time can be reduced, thus reducing the total execution time of the
program. Such a fast small memory is referred to as a cache memory. It is placed between the
CPU and main memory.

The basic operation of the cache is as follows. When the CPU needs to access memory,
the cache is examined. If the word is found in the cache, it is read from the fast memory. If the
word addressed by the CPU is not found in the cache, the main memory is accessed to read the
word. The performance of cache memory is frequently measured in terms of a quantity called
hit ratio. When the CPU refers to memory and finds the word in cache, it is said to produce a
hit. If the word is not found in cache, it is in main memory and it counts as a miss.

Three types of mapping procedures are of practical interest when considering the
organization of cache memory:

1. Associative mapping

2. Direct mapping

3. Set-associative mapping

Virtual Memory

Virtual memory is a concept used in some large computer systems that permit the user to
construct programs as though a large memory space were available, equal to the totality of
auxiliary memory. Virtual memory is used to give programmers the illusion that they have a very
large memory at their disposal, even though the computer actually has a relatively small main
memory. A virtual memory system provides a mechanism for translating programgenerated
addresses into correct main memory locations.
As an illustration, consider a computer with a main-memory capacity of 32K words (K = 1024).
Fifteen bits are needed to specify a physical address in memory since 32K = 2%, Suppose that
the computer has available auxiliary memory for storing 22° = 1024K words. Thus auxiliary
memory has a capacity for storing information equivalent to the capacity of 32 main memories.




Denoting the address space by N and the memory space by M, we then have for this example N
=1024K and M = 32K.

The mapping table may be stored in a separate memory as shown in Fig(31) or in main
memory. In the first case, an additional memory unit is required as well as one extra memory
access time. In the second case, the table takes space from main memory and two accesses to
memory are required with the program running at half speed.

Virtual address

| _
Virtual Main memory
address Memory address Main
register mapping register memory
(20 bits) table (15 bits)
Main memory
Memory table buffer register
buffer register

Figure 31 Memory table for mapping a virtual address.

The table implementation of the address mapping is simplified if the information in the
address space and the memory space are each divided into groups of fixed size. The physical
memory is broken down into groups of equal size pages and blocks called blocks, which may
range from 64 to 4096 words each. The term page refers to groups of address space of the same
size. For example, if a page or block consists of IK words, then, using the previous example,
address space is divided into 1024 pages and main memory is divided into 32 blocks.

The organization of the memory mapping table in a paged system is shown in Fig(32).
The memory-page table consists of eight words, one for each page. The address in the page table
denotes the page number and the content of the word gives the block number where that page is
stored in main memory. The table shows that pages 1, 2, 5, and 6 are now available in main
memory in blocks 0, 1, 2, and 3, respectively. A presence bit in each location indicates whether
the page has been transferred from auxiliary memory into main memory. Ay in the presence bit
indicates that this page is not available in main memory.
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Memory page table

Memory Management Hardware

A memory management system is a collection of hardware and software procedures for
managing the various programs residing in memory. The memory management software is part
of an overall operating system available in many computers.

The basic components of a memory management unit are:
1. A facility for dynamic storage relocation that maps logical memory references into
physical memory addresses.
2. A provision for sharing common programs stored in memory by different users.
3. Protection of information against unauthorized access between users and preventing
users from changing operating system functions.
The fixed page size used in the virtual memory system causes certain difficulties with respect to
program size and the logical structure of programs. It is more convenient to divide programs and
segment data into logical parts called segments.

A segment is a set of logically related instructions or data elements associated with a given

name. Segments may be generated by the programmer or by the operating system. Examples of
segments are a subroutine, an array of data, a table of symbols, or a user's program. The address
generated by a segmented program is called a logical address. The logical address may be larger
than the physical memory address as in virtual memory, but it may also be equal, and sometimes
even smaller than the length of the physical memory address.
Numerical Example: A numerical example may clarify the operation of the memory
management unit. Consider the 20-bit logical address specified in Fig(33-a).This configuration
allows each segment to have any number of pages up to 256. The smallest possible segment will
have one page or 256 words. The largest possible segment will have 256 pages, for a total of
256 x 256 = 64K words. The physical memory shown in Fig(33-b).
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(a) Logical address format: 16 segments of 256 pages each,
cach page has 256 words

12 8
[ Block Word

20 x 32

Physical memory (b) Physical address format: 4096 blocks of 256 words each,

each word has 32 bits

Figute 33 An example of logical and physical addresses.

Consider a program loaded into memory that requires five pages. The operating system may
assign to this program segment 6 and pages 0 through 4, as shown in Fig(34-a). The total logical
address range for the program is from hexadecimal 60000 to 604FF. The correspondence
between each memory block and logical page number is then entered in a table as shown in
Fig(34-b).

Hexadeclmal

address Page number

60000 Page 0 Segment  Page Block
60100 Page 1 6 00 012

6 01 000
60200 Page 2 6 02 019
60300 Page 3 6 03 053
60400 6 04 A61
604FF Page 4

A (b) Segment-page versus
(a) Logical address assignment *" memory block assignment

Figure 34  Example of logical and physical memory address assignment.

The information from this table is entered in the segment and page tables as shown in  Fig(35-
a). Now consider the specific logical address given in Fig(35). The 20-bit address is listed as a
five-digit hexadecimal number. It refers to word number 7E of page 2 in segment 6. The base of
segment 6 in the page table is at address 35. Segment 6 has associated with it five pages, as
shown in the page table at addresses 35 through 39. Page 2 of segment 6 is at address 35 + 2 =
37. The physical memory block is found in the page table to be 019. Word 7E in block 19 gives
the 20-bit physical address 0197E. Note that page 0 of segment 6 maps into block 12 and page
1 maps into block 0. The associative memory in Fig(35-b) shows that pages 2 and 4 of segment
6 have been referenced previously and therefore their corresponding block numbers are stored
In the associative memory.



Logical address (in haxadecimal)

[ 6 | o | = |
Segment table Page table
00 00000
000FF
33
35 012
36 000
37 019 01200
o OI2FF
= 39 A1
01900
0197
A3 012 019EF

(a) Segment and page table mapping

Physical memory

Block 0

Block 12

32-bit word

Figure 35  Logical to physical memory mapping example

Continue
Segment Page Block
6 02 019
6 04 A6l
{b) Associative memory (TLB)

(all numbers are in hexadecimal).




Input-Output Organization

The input-output subsystem of a computer, referred to as 1/0O, provides an efficient mode
of communication between the central system and the outside environment. Programs and data
must be entered into computer memory for processing and results obtained from computations
must be recorded or displayed for the user.

Peripheral Devices

Input or output devices attached to the computer are also called peripherals.

» The display terminal can operate in a single-character mode where all characters entered
on the screen through the keyboard are transmitted to the computer simultaneously. In the
block mode, the edited text is first stored in a local memory inside the terminal. The text
is transferred to the computer as a block of data.

» Printers provide a permanent record on paper of computer output data.

» Magnetic tapes are used mostly for storing files of data.

» Magnetic disks have high-speed rotational surfaces coated with magnetic material.

Input-Output Interface

Input-output interface provides a method for transferring information between internal storage
and external 1/0 devices. Peripherals connected to a computer need special communication links
for interfacing them with the central processing unit. The major differences are:



1. Peripherals are electromechanical and electromagnetic devices and their manner of
operation is different from the operation of the CPU and memory, which are electronic
devices. Therefore, a conversion of signal values may be required.

2. The data transfer rate of peripherals is usually slower than the transfer rate of the CPU,
and consequently, a synchronization mechanism may be needed.

3. Data codes and formats in peripherals differ from the word format in the CPU and
memory.

4. The operating modes of peripherals are different from each other and each must be
controlled so as not to disturb the operation of other peripherals connected to the CPU.

A typical communication link between the processor and several peripherals is shown in Fig.36.
The 1/0 bus consists of data lines, address lines, and control lines. The magnetic disk, printer,
and terminal are employed in practically any general-purpose computer. The interface selected
responds to the function code and proceeds to execute it. The function code is referred to as an
I/0 command and is in essence an instruction that is executed in the interface and its attached
peripheral unit.

There are three ways that computer buses can be used to communicate with memory and 1/O:

1. Use two separate buses, one for memory and the other for 1/0.

2. Use one common bus for both memory and 1/0 but have separate control lines for each.

3. Use one common bus for memory and 1/0 with common control lines.

1/0 bus
Data
Processor Address
T Control
Interface Interface Interface interface
displey ; disk tape
terminal

Figure 36 Connection of O bus to input-output devices.

Isolated 1/O versus Memory-Mapped 1/O

Many computers use one common bus to transfer information between memory or 1/O and the
CPU. In the isolated 1/0O configuration, the CPU has distinct input and output instructions, and
each of these instructions is associated with the address of an interface register. The isolated 1/0
method isolates memory and 1/0O addresses so that memory address values are not affected by
interface address assignment since each has its own address space. The other alternative is to
use the same address space for both memory and 1/0.
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Figure 37  Example of /O interface unit.

This is the case in computers that employ only one set of read and write signals and do not
distinguish between memory and 1/O addresses. This configuration is referred to as memory
mapped 1/O. In a memory-mapped 1/O organization there is no specific input or output
instructions. Computers with memory-mapped I/O can use memory-type instructions to access
I/0 data.

An example of an 1/O interface unit is shown in block diagram form in Fig.37. It consists of two
data registers called ports, a control register, a status register, bus buffers, and timing and control
circuits. The interface communicates with the CPU through the data bus. The chip select and
register select inputs determine the address assigned to the interface. The 1/O read and write are
two control lines that specify an input or output, respectively. The four registers communicate
directly with the 1/0 device attached to the interface.

Asynchronous Data Transfer

The internal operations in a digital system are synchronized by means of clock pulses supplied
by a common pulse generator. If the registers in the interface share a common clock with the
CPU registers, the transfer between the two units is said to be synchronous. In most cases, the
internal timing in each unit is independent from the other in that each uses its own private clock
for internal registers. In that case, the two units are said to be asynchronous to each other. This
approach is widely used in most computer systems. Asynchronous data transfer between two
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independent units requires that control signals be transmitted between the communicating units
to indicate the time at which data is being transmitted. Two way of achieving this:

» The strobe: pulse supplied by one of the units to indicate to the other unit when the transfer
has to occur.

» The handshaking: The unit receiving the data item responds with another control signal to
acknowledge receipt of the data.

The strobe pulse method and the handshaking method of asynchronous data transfer are not
restricted to 1/O transfers.

The strobe may be activated by either the source or the destination unit. Figure 38 shows a
source-initiated transfer and the timing diagram.

Data bus

Source Destination
unit Strobe unit

(a) Block diagram

Data «— Valid data —»

Strobe

(b) Timing diagram
Figure 38  Source-initiated strobe for data transfer.

Fig.39 shows the strobe of a memory-read control signal from the CPU to a memory.

Data bus
Source »| Destination
unit 3 Strobe unit
(a) Block diagram
Data ~<+—Valid data —»

Strobe

(b) Timing diagram
Figure 39 Destination-initiated strobe for data transfer.

The disadvantage of the strobe method is that the source unit that initiates the transfer has no
way of knowing whether the destination unit has actually received the data item that was placed
in the bus. The handshake method solves this problem by introducing a second control signal
that provides a reply to the unit that two-wire control initiates the transfer.

11



Figure 40 shows the data transfer procedure when initiated by the source. The two handshaking
lines are data valid, which is generated by the source unit, and data accepted, generated by the
destination unit. The timing diagram shows the exchange of signals between the two units.
Figure 41 the destination-initiated transfer using handshaking lines. Note that the name of the
signal generated by the destination unit has been changed to ready for data to reflect its new
meaning.

Central processing
unit (CPU)

A
[

Peripheral devices

processor (IOP) 1/0 bus

Memory unit  f—i=—

Memory bus

!
|

Figure 45 Block diagram of a computer with I/O processor.

Pipelining
Pipelining is a technique of decomposing a sequential process into sub-operations; with each
sub-process being executed in a special dedicated segment that operates concurrently with

all other segments. A pipeline can be visualized as a collection of processing segments
through which binary information flows.

General Considerations

Any operation that can be decomposed into a sequence of sub-operations of about the same
complexity can be implemented by a pipeline processor. The general structure of a four

segment pipeline is illustrated in Fig. 46. The operands pass through all four segments in a
fixed sequence.

Clock
\/ ¥ Vv
Input
———l S: Sz Rz Sy R] Sa 1 Ry

Figure 46  Four-segment pipeline.
The space-time diagram of a four-segment pipeline is demonstrated in Fig47.

12



! 2 3 4 5 6 7 8 9
# Clock cycles
Segment: 1| T, T, Ty T4 Ts Ts
2 T T, K Ty Ts Tg
3 T, T Ty Ty Ts T,
4 T T2 Ty T Ts Ts

Figm 47  Space-time diagram for pipeline.

The speedup(S) of a pipeline processing over an equivalent non-pipeline processing is
nty,

defined by the ratio: " ktn-1g,

As the number of tasks increases, n becomes much larger than k — 1, and k + n — 1
approaches the value of n. Under this condition, the speedup becomes:

t
S=—
tP
numerical example: Let the time it takes to process a sub-operation in each segment be equal
to t,= 20 ns. Assume that the pipeline has k = 4 segments and executes n = 100 tasks

in sequence. The pipeline system will take
(k+n—1)t,=(4+99) X 20 = 2060ns
to complete. Assuming that t =kxt,=4x20=80ns, a
non-pipeline system requires:
nkt,= 100 X 80 = 8000ns

to complete the 100 tasks. The speedup ratio is equal to:

8000 /5060 = 3.88
Instruction Pipeline
The computer needs to process each instruction with the following sequence of steps:
1. Fetch the instruction from memory.
2. Decode the instruction.
3. Calculate the effective address.
4. Fetch the operands from memory.
5. Execute the instruction.
6. Store the result in the proper place.

13



Figure 48 shows how the instruction cycle in the CPU can be processed with a four-segment
pipeline. While an instruction is being executed in segment 4, the next instruction in sequence
Is busy fetching an operand from memory in segment 3.

The four segments are represented in the flowchart:

1. FI is the segment that fetches an instruction.

2. DA is the segment that decodes the instruction and calculates the effective address.
3. FO is the segment that fetches the operand.

4. EX is the segment that executes the instruction.

Scgment 1:

Segment 2:

Segment 3

Segment 4:

|

Updatz

Ioterrup
f
PC

Figure 48  Four-segment CPU pipeline.

A pipeline operation is said to have been stalled if one unit (stage) requires more time to perform
its function, thus forcing other stages to become idle. Consider, for example, the case of an
instruction fetch that incurs a cache miss. Assume also that a cache miss requires three extra
time units.

Instruction-Level Parallelism
Contrary to pipeline techniques, instruction-level parallelism (ILP) is based on the idea of
multiple issue processors (MIP). An MIP has multiple pipelined data paths for instruction

14



execution. Each of these pipelines can issue and execute one instruction per cycle. Figure 49
shows the case of a processor having three pipes. For comparison purposes, we also show in the
same figure the sequential and the single pipeline case. Instruction-level parallelism (ILP) is the
parallel or simultaneous execution of a sequence of instructions in a computer program. More
specifically ILP refers to the average number of instructions run per step of this parallel

execution.
i ) ladaill dae Jans gia ) TLP iy ¢ 13n JTJS) | 5aS grali 0 (o ilaslarll o Aluad Gl Sial) 5l o 30 sial) 250 a2 (ILP)
o) siall 285 138 (4e 3 glad ST Lebiads

= : =" 1_; =

i (a); quUtﬂllﬂl Processing Time
;E@-l |

- (e [wy

no P[0 [E] W

b1 i2i3ilaistiei7T 8 9 101 1R

o e
[ -

'
i i i T Time
: i (b)Pipelining

@@@@
 mEEW
| [F3] (3 (3] 3
--mm
[
(7] (o8] [ [l
Im-- |
[ ] (]
| --@-

.

(r);Mulliplc issue Time

Figure 49  Multiple issue versus pipelining versus sequential processing

Computer Arithmetic

Arithmetic instructions in digital computers manipulate data to produce results necessary
for the solution of computational problems. An arithmetic processor is the part of a processor
unit that executes arithmetic operations. The data type assumed to reside in processor registers
during the execution of an arithmetic instruction is specified in the definition of the instruction.
The solution to any problem that is stated by a finite number of well-defined procedural steps is
called an algorithm.
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Addition and Subtraction with Signed-Magnitude Data: We designate (c»=) the magnitude of
the two numbers by A and B. When the signed numbers are added or subtracted, we find that
there are eight different conditions to consider, depending on the sign of the numbers and the
operation performed. These conditions are listed in the first column of Table 18. The other
columns in the table show the actual operation to be performed with the magnitude of the
numbers. The last column is needed to prevent a negative zero. In other words, when two equal
numbers are subtracted, the result should be +0 not -0.

TABLE 18 Addition and Subtraction of Signed-Magnitude Numbers

Subtract Magnitudes
Add
Operation Magnitudes When A >B WhenA<B WhenA =8B

(+A) + (+B) +(A + B)

(+A) + (-B) +(A - B) -(B - A) +(A - B)
(=A) + (+B) -(A - B) +(B - A) +(A — B)
(-A)+(-B) —(A+B)

(+A) - (+B) +(A - B) —(B—A) +(A - B)

(+A) = (=B) +(A + B)
(-A) - (+B) -(A+ B)
(-A) — (—B) ~(A - B) +(B - A) +(A — B)

56

Multiplication Algorithms

Multiplication of two fixed-point binary numbers in signed-magnitude representation is done
with paper and pencil by a process of successive shift and add operations. This process is best
illustrated with a numerical example:

Note: The product of multiplying any binary number x by a single binary digit is always either 0 or x. Therefore, the multiplication
of two binary numbers comes down to shifting the multiplicand left appropriately for each non-zero bit in the multiplier, and then
adding the shifted numbers together

23 10111  Multiplicand
19 x 10011 Multiplier
10111
10111
00000 +
00000
10111
437 110110101  Product

Figure 52 is a flowchart of the hardware multiply algorithm. Initially, the multiplicand is in B
and the multiplier in Q. Their corresponding signs are in Bs and Qs, respectively. The signs are
compared, and both A and Q are set to correspond to the sign of the product since a double
length product will be stored in registers A and Q. Registers A and E are cleared and the

sequence counter SC is set to a number equal to the number of bits of the multiplier.
16




Multiply Operation

4
Multiplicand in B
Multiplier in Q

A, €Q; DB, & Q,€Q; DB
A€<0,E€<0
SCén-1

Hardware Algorithm for Multiply Operation

Initially multiplicand is stored in B register and multiplier is stored in Q
register

Sign of registers B (Bs) and Q (Qs) are compared using XOR functionality
(if both the signs are alike, output of XOR operation is O unless 1)

Output is stored in As (sign of A register)
Initially O is assigned to register A and E flip flop

Sequence counter (SC) is initialized with value n-1, n is the number of
bits in the Multiplier

Now least significant bit of multiplier is checked. If it is 1 add the
content of register A with Multiplicand (register B) and result is

1

«shr EAQ

=0 [Eacass |~

scenly (Product in AQ)

20 =0

END

-

assigned in A register with carry bit in flip flop E
= Content of E A Q is shifted to right by one position

a similar fashion
= Content of Sequence counter is decremented by 1

is present in register A and Q, else repeat the process

= If Qn = 0, only shift right operation on content of E A Q is performed in

= Check the content of SC, if it is 0, end the process and the final product

Multiply operation

Multiplicand in B
Multiplier in Q

1

A! ‘_QSQBI
Q: -~ 2:®B,
A«0,E+0
SC+n -1

=0 /Q\ =
N

shr EAQ
SC+S8C -1

#0 =0

sc
S |

( END )
(product is in AQ)

Figure 52 Flowchart for multiply operation.
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https://www.youtube.com/watch?v=2IxktI0BOu4

l Hardware Implementation for Multiply Operation ] e 2
B¢ multiplicand, Bs¢ sign
Q<& multiplier, Qs€ sign
B B Ragiter Sefstcs Countes (50) ‘| »Successively accumulate partial products and shift it right
*SC& no. of bits in multiplier
Complementer Ha——— =SC is decremented after forming each partial product
& Pavaliel Adder | i Q, =When SC is 0, process halts and final product is formed
- 1 23 10111 Multiplicand
A; || A Register »| Q Register|| Qg 19 % 10011 Multiplier
10111 =
10111 <«
0 E 00000 +
00000
10111

437 110110101 Result

58
The hardware for implementing the division operation is identical to that required for
multiplication and consists of the components Register EAQ is now shifted to the left with O
inserted into Q, and the previous value of E lost. The numerical example is repeated as in Figure
53:

Multiplication Process

The multiplier and multiplicand are loaded into two registers Q and M.

A Third Register A is initially set to zero.

C is the 1-bit register holds the carry bit resulting from addition. Now

The control logic reads bits of the multiplier at one time.
If Qo is 1, the multiplicand is added to register A and stored back in register A with C bit used for carry.
Then all the bits of CAQ are shifted to right 1 bit, so that C bit goes to An-1 Ao goes to

Qn-1 and Qn is lost.
If Qo is 0 no addition is performed just do the shift.

The process is repeated for each bit of the original multiplier.

The result 2n bit product is contained in QA registers

18



Unsigned Binary Multiplication
1011 Multiphicand 11

x 1101
1011
0000
1011
+1011
10001111

Multiplier 13

Partial Product

Product (143)

Divisor B = 10001,

Dividend:
shl EAQ
add B + 1

E=1
SetQ, =1
shl EAQ
AddB+1

E=1
SetQ, =1
shl EAQ
Add B +1

E=0;leave Q, =0
Add B
Restore remainder

shl EAQ
Add B +1

E=1

SetQ, =1

shl EAQ

AddB + 1
E=0;leave Q, =0
Add B

Restore remainder
Neglect £

Remainderin4:
Quotient in Q:

Figure 53

Start

\J

»

[

No

Qp=1

Y

, RightShiftg, A Q _
Counl(-gomlw

(SC=8C-
Y

Is
No  Count=0
2
y Yes
Stop

B & Multiplicand, Q € Multiplier
E, A € 0, Count € No. of bits of Q

S A€A+EB

Result in AQ

Flowchart of Unsigned Binary Multiplication

B+1=01111

A
e,

01110
11100
01111

01011
01011
10110
O1111

00101
00101
01010
ol111

11001
10001

01010
10100

oritt

00011
00011
00110
o111

10101
10001

00110
00110

Example: Muluply 15 X 11 vsw,

00001
00010

00011
00110

00110

01100

01101
11010

11010

11010

11010

Example of binary division with digital hardware.

gned binary method 1011 * 1111

[E A Q B SC Remarks

0 0000 1011 1111 4 Initiahzation

0 1111 1011 Add(A€A+B)

0 o111 110]] 3 Logical Right Shift E A Q
1 0110 1101 = Add(A€A+B)

0 1011 o1 2 Logical Right Sluft . A. Q
0 0101 1010 1 Logical Right Shift E, A, Q
1 0100 1011 = AddACATD)

0 1010 0101 0 Logical Right Shifte , A, Q

Result=10100101 =27 +2° + 22+ 2°= 165
Method of Unsigned Binary Multiplication
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Decimal Arithmetic Unit

To perform arithmetic operations with decimal data, it is necessary to convert the input decimal
numbers to binary, to perform all calculations with binary numbers, and to convert the results
into decimal. It can add or subtract decimal numbers, usually by forming the 9's or 10's
complement of the subtrahend(zs-"). Consider the arithmetic addition of two decimal digits in
BCD, together with a possible carry from a previous stage. To add 0110 to the binary sum, we
use a second 4-bit binary adder as shown in Fig. 54. The two decimal digits, together with the
input- carry, are first added in the top 4-bit binary adder to produce the binary sum. When the
output carry is equal to 0, nothing is added to the binary sum.

20



Addend Augend

SRR NN RS

&bt bi
Carry bit binary adder Ciiiy
out K [

in
Zy Z, Z, Z,

Qutput
carry

22} Yy v 9

4-bit binary adder

S Sy & 8§
Figure 54  Block diagram of BCD adder.

Reduced Instruction Set Computers (RISCs)

The RISC approach is RISC-based machines are reality and they are characterized by a
number of common features such as simple and reduced instruction set, fixed instruction format,
one instruction per machine cycle, pipeline instruction fetch/execute units, ample number of
general purpose registers (or alternatively optimized compiler code generation), Load/Store
memory operations, and hardwired control unit design. While Complex Instruction Set
Computers (CISCs) is became apparent that a complex instruction set has a number of
disadvantages. These include a complex instruction decoding scheme, an increased size of the
control unit, and increased logic delays.

RISCs DESIGN PRINCIPLES

A computer with the minimum number of instructions has the disadvantage that a large
number of instructions will have to be executed in realizing even a simple function. This will
result in a speed disadvantage. The observations about typical program behavior have led to the
following conclusions:

1. Simple movement of data (represented by assignment statements), rather than complex
operations, are substantial and should be optimized.
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2. Conditional branches are predominant and therefore careful attention should be paid to
the sequencing of instructions. This is particularly true when it is known that pipelining
Is indispensable to use.

3. Procedure calls/return are the most time-consuming operations and therefore a
mechanism should be devised to make the communication of parameters among the
calling and the called procedures cause the least number of instructions to execute.

4. A prime candidate for optimization is the mechanism for storing and accessing local
scalar variables.

The following set of common characteristics among RISC machines is observed:

. Fixed-length instructions

. Limited number of instructions (128 or less)

. Limited set of simple addressing modes (minimum of two: indexed and PC-relative)

. All operations are performed on registers; no memory operations

. Only two memory operations: Load and Store

. Pipelined instruction execution

. Large number of general-purpose registers or the use of advanced compiler technology to
optimize register usage

. One instruction per clock cycle

. Hardwired control unit design rather than microprogramming

~No ok wN

O o

RISCs VERSUS CISCs
Tables 20 show a limited comparison between an example RISC and CISC machine in terms of
characteristics:

TABLE 20 RISC Versus CISC Characteristics

Characteristic (CISC) (RISC)
Number of instructions 303 31
Instruction size (bits) 16-456 32
Addressing modes 22 3
No. general purpose registers 16 138

MULTIPROCESSORS

A multiple processor system consists of two or more processors that are connected in a
manner that allows them to share the simultaneous (parallel) execution of a given computational
task. Parallel processing has been advocated as a promising approach for building high-
performance computer systems. The organization and performance of a multiple processor
system are greatly influenced by the interconnection network used to connect them. On the one
hand, a single shared bus can be used as the interconnection network for multiple processors.
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CLASSIFICATION OF COMPUTER ARCHITECTURES
A number of classification schemes have been proposed, these include:

1
2

3
4

the Flynn’s classification (1966).
the Kuck (1978).

the Hwang and Briggs (1984).
the Erlangen (1981).

5- the Giloi (1983).

6- the Skillicorn (1988). 7- the Bell (1992).
The instruction stream is defined as the sequence of instructions performed by the computer.
The data stream is defined as the data traffic exchanged between the memory and the processing
unit. This leads to four distinct categories of computer architectures:

1. Single-instruction single-data streams (SISD)

2. Single-instruction multiple-data streams (SIMD)

3. Multiple-instruction single-data streams (MI1SD)

4. Multiple-instruction multiple-data streams (MIMD)

SIMD SCHEMES

Two main SIMD configurations have been used in real-life machines. These are shown in Figure
56.
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Figure 56 Two SIMD schemes. (@) SIMD scheme 1, () SIMD scheme 2

MIMD SCHEMES

MIMD machines use a collection of processors, each having its own memory, which can be used
to collaborate on executing a given task. In general, MIMD systems can be categorized based
on their memory organization into shared-memory and message-passing architectures.

e I—
I)ﬂ [ —1 171"
\I

M

a- A simple shared memory scheme

P, M; P, M,
I I _IT_

R

Interconnection Network

b- a message-passing multiprocessor architecture
Figure 57 MIMD Schemes
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INTERCONNECTION NETWORKS

The classification of interconnection networks is based on topology. Interconnection networks
are classified as either static or dynamic. In Figure 58, is provide such a taxonomy.

Interconnection Networks

)
VAN

& N
{ \
Static Dynamic
A A
( o , AN N
ID 2D HC i .
Bus-based Switch-based
A A
i N 4 3
Single Multiple SS MS  Crossbar

Figure 58 A topology-based taxonomy for interconnection networks
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Parallel Processing

Execution of Concurrent Events in the computing process to
achieve faster Computational Speed

The purpose of parallel processing is to speed up the computer
processing capability and increase its throughput, that is, the
amount of processing that can be accomplished during a given
interval of time.

The amount of hardware increases with parallel processing,
and with it, the cost of the system increases.

However, technological developments have reduced hardware
costs to the point where parallel processing techniques are
economically feasible.



Parallel processing according to levels of complexity

At the lower level

Serial Shift register VS
parallel load registers

At the higher level

Multiplicity of functional
units that performs
iIdentical or different

operations simultaneously.
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Parallel Computers

Architectural Classification

— Flynn's classification

» Based on the multiplicity of Instruction Streams and
Data Sfreams

» Instruction Stream
« Sequence of Instructions read from memory

» Data Stream
« Qperations performed on the data in the processor

Number of Data Streams

Single Multiple

Number of | Single SISD SIMD
Instruction

Streams Multiple MISD MIMD




SISD COMPUTER SYSTEMS

‘ Instruction Memory H Control Linit }—M Processing Linit 4—’{ Data Memory
—

——

Instruction Stream Diita Savesin

(er) SIS

- Standard von Neumann machine
- Instructions and data are stored in memory
- One operation at a time

Limitati
iVnn Neumann bnttleneckl

Maximum speed of the system is limited by the Memory
Bandwidth (bits/sec or bytes/sec)
- Limitation on Memory Bandwidth

- Memory is shared by CPU and /O




Von Neumann Architecture

Memory

|

|

|

Arithm_etic:
Control [ 7 Logic
Unit . Unit
Accumulator
!‘h\
Input Output

=chematic of the von Meumann architecture. The
Cantrol Uit and Arithmetic Logic Unit form the main
components of the Central Processing Unit (CPLDY
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MISD COMPUTER SYSTEMS

F-| Conrol Lin

Instrocton Memory

"oq Irstriteton SEream
"

—"J Control Unit —®™ Processing Uini ‘*—% Lasea dvleanory

Instrucrion Memory

&

Fnsomicrion Stresm ;
FXata Steeaim

Instruction Maemaory = Control Lint

Instrmciion Streanm
(e r WISID

Characteristics

- There is no computer at present that can be
classified as MISD
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SIMD COMPUTER SYSTEMS

P Processing Umt <€ B Data Memory

Instruction Memory  — Control Unit —=— Processing Unit ¥ Data Memory

—
IasinicagEeg —p Processing Unit <—  Data Memory
M
Dhata Stream
Characteristics

- Only one copy of the program exists
- A single controller executes one instruction at a time




MIMD COMPUTER SYSTEMS

|
Fostracbion Momory o omnteod Uingt O Prrowcossinge Hlan
|
. -
Toystone teomy Stecany
; -
Tostruction Momuory .‘I Clontrol Uhnn P Procossing Linag
. -
Instrncton Stecam
I Tnstruction Memany ' & Comtrol Linit ]- »{ Prowessing Linn
e

Insumaction Stra:un

Characteristics

- Multiple processing units

Types of MIMD computer systems

- Shared memory multiprocessors
- Message-passing multicomputers

'l I ST \'l‘llloﬂ') \

B

It Stvecam

.I Yot Maimory l

>
It Stecaam
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- Execution of multiple instructions on multiple data




PIPELINING

A technique of decomposing a sequential process into
suboperations, with each subprocess being executed in a
partial dedicated segment that operates concurrently
with all other segments.

A pipeline can be visualized as a collection of processing
segments through which binary information flows.

The name “pipeline” implies a flow of information analogous
to an industrial assembly line.



Example of the Pipeline Organization

A*B+C, fori=1,23,..,7

A B. Memory ¢,
]
Segment 1 1
-t i
Multiplier
Segment 2
R3 R4
_J _____§ |

Segment 3

|

R1« A, RZ2« B, Load A, and B,
R3I«< R1*RZ2, R4+ C, Muitiply and load C,
RS« R3+R4 Add




OPERATIONS IN EACH PIPELINE STAGE

Clock Segment 1 Segment 2 | Segment 3
rUse o1 R2 R3 R4 R5
1 A1 B1
2 A2 B2| A1*B1 C1
3 A3 B3| A2*B2 C2 A1*B1+C1
4 Ad B4| A3I*B3 C3 A2*B2+C2
5 AS B5| A4"B4 C4 | A3*B3+C3
6 A6 B6| AS*BS G5 A4"B4+C4
7 A7 B7| A6*B6 C6 AS*Bo+C5H
8 A7*B7 C7 | A6*B6+C6
9 AT *BT7 +C7




GENERAL PIPELINE

General Structure of a 4-Segment Pipeline

Clock

INPUT e Sq

1]2]3jJ4a]ls5]6]7]s]sl

Clock cycles

Segment 1L
2 T1] T2 ] TI| T4 T5| TE
3 T1JT21 731 T4]T5] T8
4 T11 T2 T3| T4] TS5] TG

Behavior of the pipeline is illustrated with a space time diagram.
Space time diagram:

This shows the segment utilization as a function of time.




Space Time diagram:

« [he horizontal axis displays the time In clock cycle and
vertical axis gives the segment number

« Diagram shows 6 task (11 to T6)executed in four segment

Task :

Is defined as the total operation performed going through
all the segment in the pipeline




Speedup ratio of pipeline

Consider

+ k: segment pipeline with clock cycle time t, to execute
n tasks

+ first task T1 requires a time equal kt, to cumplete its
operation since there are k segments in the pipe.

+ Remaining n-1 tasks emerge from the pipe at the rate
of one task per clock cycle and they will complete

after a time equal to (n-1)tp.

+ Therefore to complete n task using k-segement
pipeline requires
K+(n-1) clock cycle

+ Example 4 segment, 6task
time required to complete op. 4+(6-1)=9
clock cycle




cont.

For nonpipeline unit that perform the same operation and
takes a time equal to t, to complete each task.

The total time required for n tasks =nt,

Speedup of a pipeline processing over an equivalent
nonpipeline processing is defined by the ratio

S=nt_ [ (K+n-1)t,

As the number of tasks increases , n beomes larger the k-1,
and k+n-1 approaches the value of n under this condition
.the speedup becomes S=t, ftp

If we assume that the time it takes to process a task is the
same In the pipeline and nonpipeline circuit, th=ktp

Including the assumption speedup reduces to S=Kt /t =K

This shows that the theoretical max. speedup that a
pipeline can provide is k, where k is the no. of segment in
the pipeline




PIPELINE AND MULTIPLE FUNCTION UNITS

Example
- 4-stage plpElIl‘!E
- subopertion in each stage; t, = 20nS
- 100 tasks to be executed
- 1 task in non-pipelined system; 20"4 = 80nS

Pipelined System
(K+n-1)t,=(4+99) " 20 = 2060nS

Non-Pipelined System
tn= n*k*tp =100 * 80 =8000nS

Speedup
S, = 8000/ 2060 = 3.88

4-Stage Pipeline is basically identical to the system with 4
identical function units




Multiple Functional Units
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ARITHMETIC PIPELINE

" Floating-point adder

X=Ax2®
Y=Bx2"

[1] Compare the exponents
[2] Align the mantissa

[3] Add/sub the mantizsa
[4] Normalize the resuit

Exponents

Compare

Segment 1: exponents

Mantissas

—u-l Align mantissa |

llll l.llflEI.!.l.l‘lq

!

Add or subtract

AR RARRD
Segment 2:
Segment 3.
¥
AU N
. Adjust
Segment &: I i et




INSTRUCTION CYCLE

Six Phases® in an Instruction Cycle

[1] Fetch an instruction from memory
[2] Decode the instruction
[3] Calculate the effective address of the operand

[4] Fetch the operands from memory
[5] Execute the operation
[6] Store the result in the proper place

* Some instructions skip some phases

* Effective address calculation can be done in
the part of the decoding phase

* Storage of the operation result into a register
is done automatically in the execution phase

==> 4-5Stage Pipeline

[1] FI: Fetch an instruction from memory

[2] DA: Decode the instruction and calculate
the effective address of the operand

[3] FO: Fetch the operand

[4] EX: Execute the operation




INSTRUCTION PIPELINE

Execution of Three Instructions in a 4-Stage Pipeline

Conventional

i| Fl |DA|FD|EJ~:|
#1|_Fi | pal Fol Ex

i+2| Fi IDAlFDlEKI

Pipelined

i | F1 | DA} FO J EX

+1| F1 | pal o ex
+2| 1 | oAl Fo] Ex




INSTRUCTION EXECUTION IN A 4-STAGE PIPELINE
*

3 Feich instruction

+

Denndﬁe iqstr}uctinn
Saament?: and calculate
g geffective address

Eranch'-*““—

-Ln-:r

Fetch operand

_l[D_IIJ_ml'D.IIlD.EJ_

'E.Eg mentd: Exacure Instruction

N

Interrupt |a—Y&3. —7; Imerrupt‘-' -
handling
an:-

yes ——

Segment3;

| update PC |

|EI.I.IFI!‘|..'III FIP‘| S,mp:

Ingtruction

{Dranch)




Pipeline

v v

Fetch instruction
from memory

v

Decode instruction

and calculate
effective address

X

-r"'..-r.- -"‘1_.‘_‘_‘-

Segment1: ‘
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