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Regular Expression 
 
 
 

The language-defining symbols we are about to create are called 
regular expressions. The languages that are associated with these regular 
expressions are called regular languages. 

 
Example consider the language L  
where L={Λ x xx xxx …} by using star notation we may write 

L=language(x*).  
Since x* is any string of x's (including Λ). 

 
Example if we have the alphabet ∑={a,b}  

And L={a ab abb abbb abbbb …} 
Then L=language(ab*) 

 
Example (ab)*= Λ or ab or abab or ababab or abababab or …. 

 
Example L1=language(xx*) 
The language L1 can be defined by any of the expressions:  
xx* or x+ or xx*x* or x*xx* or x+x* or x*x+ or x*x*x*xx* … 
Remember x* can always be Λ. 

 
Example language(ab*a)={aa aba abba abbba abbbba …} 

 
Example language(a*b*)={ Λ a b aa ab bb aaa aab abb bbb … } ba 
and aba are not in this language so a*b* ≠ (ab)* 

 
Example the following expressions both define the language 

L2={xodd}: x(xx)* or (xx)*x  
But the expression x*xx* does not since it includes the word (xx)x(x). 

 
Example consider the language T defined over the alphabet ∑={a,b,c} 

T={a c ab cb abb cbb abbb cbbb abbbb cbbbb …}  
Then T=language((a+c)b*) 

T=language(either a or c then some b's) 
 

Example consider a finite language L that contains all the strings of a's 
and b's of length exactly three.  

L={aaa aab aba abb baa bab bba bbb} 
L=language((a+b)(a+b)(a+b)) 
L=language((a+b)3) 
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Note from the alphabet ∑={a,b} , if we want to refer to the set of all 
possible strings of a's and b's of any length (including Λ) we could write  
(a+b)* 

 
Example we can describe all words that begins with a and end with b 
with the expression a(a+b)*b which mean a(arbitrary string)b 

 
Example if we have the expression (a+b)*a(a+b)* then the word 
abbaab can be considerd to be of this form in three ways: (Λ)a(bbaab) 
or (abb)a(ab) or (abba)a(b) 

 
Example (a+b)*a(a+b)*a(a+b)*  

= (some beginning)(the first important a)(some middle)(the 
second important a)(some end)  

Another expressions that denote all the words with at least two a's are:  
b*ab*a(a+b)*, (a+b)*ab*ab*, b*a(a+b)*ab* 

Then we could write: 
language((a+b)*a(a+b)*a(a+b)*)  
=language(b*ab*a(a+b)*) 
=language((a+b)*ab*ab*) 
=language(b*a(a+b)*ab*)  
=all words with at least two a's. 

Note: we say that two regular expressions are equivalent if they describe 
the same language. 

 
Example if we want all the words with exactly two a's, we could use 

the expression: b*ab*ab* which describe such words as 
aab, baba, bbbabbabbbb,… 

 
Example the language of all words that have at least one a and at least 

one b is: (a+b)*a(a+b)*b(a+b)*+(a+b)*b(a+b)*a(a+b)* 
 

Note: (a+b)*b(a+b)*a(a+b)* ≠ bb*aa* since the left includes the word 
aba, which the expression on the right side does not. 

 
Note: (a+b)* = (a+b)* + (a+b)*  

(a+b)* = (a+b)*(a+b)* 
(a+b)* = a(a+b)* + b(a+b)* + Λ  
(a+b)* = (a+b)*ab(a+b)* + b*a* 

 
Note: usually when we employ the star operation we are defining an 
infinite language. We can represent a finite language by using the 
plus alone. 
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Example L={abba baaa bbbb}  
L=language(abba + baaa + bbbb) 

 
Example L={ Λ a aa bbb}  

L=language(Λ + a + aa + bbb) 
 

Example L={Λ a b ab bb abb bbb abbb bbbb …} 
We can define L by using the expression b* + ab* 

 
Definition  

The set of regular expressions is defined by the following rules:  
Rule1: every letter of ∑ can be made into a regular expression, Λ is a 

regular expression. 
Rule2: if r1 and r2 are regular expressions, then so are: (r1) r1r2 r1+r2 

r1*.  
Rule3: nothing else is a regular expression. 

 

Remember that r1+=r1r1* 
 

Definition  
If S and T are sets of strings of letters (whether they are finite or 

infinite sets), we define the product set of strings of letters to be: 
ST={all combination of a string from S concatenated with a string 
from T} 

 
Example if S={a aa aaa} T={bb bbb}  
Then ST={abb abbb aabb aabbb aaabb aaabbb} 
(a+aa+aaa)(bb+bbb)=abb+abbb+ aabb+aabbb+aaabb+aaabbb) 

 
Example if P={a bb bab} Q={Λ bbbb}  
Then PQ={a bb bab abbbb bbbbbb babbbbb} 
(a+bb+bab)( Λ+bbbb)=a+bb+bab+ab4+b6+bab5 

 
Example if M={Λ x xx} N={Λ y yy yyy yyyy …} 
Then MN={Λ y yy yyy yyyy … 

x xy xyy xyyy xyyyy … 
xx xxy xxyy xxyyy xxyyyy …} 

Using regular expression we could write: 
(Λ+x+xx)(y*)=y*+xy*+xxy* 

 
 
 
 
 



6 
 

 
Definition  

The following rules define the language associated with any 
regular expression.  
Rule1: the language associated with the regular expression that is just a 
single letter is that one-letter word alone and the language associated with 
Λ is just{Λ}, a one-word language. 
Rule2: if r1 is regular expression associated with the language L1 and 
r2 is regular expression associated with the language L2 then:  

i) The regular expression (r1)(r2) is associated with the language L1 
times L2. 

Language(r1r2)=L1L2 
ii) The regular expression r1+r2 is associated with the language 

formed by the union of the sets L1 and L2. 
Language(r1+r2)=L1+L2 

iii) The language associated with the regular expression (r1)* is 
L1*, the kleene closure of the set L1 as a set of words. 

Language(r1)*=L1* 
 

Example L={baa abba bababa}  
The regular expression for this language is: (baa+abba+bababa) 

 
Example L={Λ x xx xxx xxxx xxxxx} 
The regular expression for this language is: (Λ+x+xx+xxx+xxxx+xxxxx)  

=(Λ+x)5 

 
Example L= language((a+b)*(aa+bb)(a+b)*)  

=(arbitrary)(double letter)(arbitrary)  
{Λ a b ab ba aba bab abab baba …} these words are not included in L but 
they included by the regular expression: (Λ+b)(ab)*(Λ+a) 

 
Example  

E=(a+b)*a(a+b)*(a+Λ)(a+b)*a(a+b)* 
E=(a+b)*a(a+b)*a(a+b)*a(a+b)*+(a+b)*a(a+b)*Λ(a+b)*a(a+b)*  

We have: (a+b)*Λ(a+b)*=(a+b)*  
Then: E=(a+b)*a(a+b)*a(a+b)*a(a+b)*+(a+b)*a(a+b)*a(a+b)* 
The language associated with E is not different from the 
language associated with: (a+b)*a(a+b)*a(a+b)* Note: 
(a+b*)*=(a+b)*  

(a*)*=a* 
(aa+ab*)*≠ (aa+ab)* 
(a*b*)*=(a+b)*  

Example E=[aa+bb+(ab+ba)(aa+bb)*(ab+ba)]* Even-even={Λ aa bb 
aabb abab abba baab baba bbaa aaaabb aaabab
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Finite Automata (FA) 
 

A finite automata is a collection of five things:  
1. A finite set of states  
2. An alphabet ∑ of possible input letters from which are formed  

strings that are to be read one letter at a time.  
3. A finite set of transitions that tell for each state and for each 

letter of the input alphabet which state to go to next.  
4. The initial state; and  
5. The set of final states. 
6. Therefore formally a finite automa 

ta is a five-tuple:   
where: 

 
Q is a set of states of the finite automata,   
 is a set of input symbols, and  
 specifies the transitions in the automata.  

 
If from a state p there exists a transition going to state q on an input symbol a, then we write (p, a) = q. Hence,  is a 

 
function whose domain is a set of ordered pairs, (p, a), where p is a state and a is an input symbol, and the range is a 

 
set of states.  
Therefore  defines a map 
ping from  

 

q0 is the initial state, and F is a set of final sates of the automata. For example:  
 
 

where  
 
 
 
 
 

The transition diagram of this automata is: 
 
 
 
 
 
 
 
 

                  Transition Diagram                                      Transition Table 
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For example:  

 
 
 

where  
 
 
 

0 
 

Let x be 010. To find out if x is accepted by the automata or not, we proceed as follows:  
1(q0, 0) =  (q0, 0) = q1 

 
Therefore, 1 (q0, 01 ) =  {1 (q0, 0), 1} = q0 

 
 1 (q 0, 010) =  {1 (q 0, 0 1), 0} = q 1

 
In the finite automata discussed above, since  defines mapping from Q ×  to Q, there exists exactly one transition 

from a state on an input symbol; and therefore, this finite automata is considered a deterministic finite automata (DFA). 
 

Therefore, we define the DFA as the finite automata: 
 

where: 
M = (Q, , , q , F ), such that there exists exactly one transition from a state on a input symbol. 

 

 

Example if ∑={a,b}, states={x,y,z}  
Rules of transition:  

1. From state x and input a go to state y. 
2. From state x and input b go to state z. 
3. From state y and input a go to state x. 
4. From state y and input b go to state z. 
5. From state z and any input stay at the state z. 

Let x be the start state and z be the final state.  

x - 
a 

y a     
b b  

z + 
 

a,b 
 

Transition Diagram  
        The FA above will accept all strings that have the letter b in them 
and no other strings. The language associated with(or accepted by) this 
FA is the one defined by the regular expression: a*b(a+b)*  

         The set of all strings that do leave us in a final state is called the language defined 
by the FA. The word abb is accepted by this FA, but 

 
 
 
 
 

 

The word aaa is not.    
 a b   

 x - y Z 
 y x Z 
 z + z Z 
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               Example The following FA accept all strings from the alphabet {a,b} 
except Λ. 

a 
 

- + 
b   

  a,b  
 

The regular expression is: (a+b)(a+b)*=(a+b)+ 

 
Example The following FA accept all words from the alphabet {a,b}.  

+ 
- 

 

The regular expression is: (a+b)* 
a,b 

 
Note: every language that can be accepted by an FA can be defined by a 
regular expression and every language that can be defined by a regular 
expression can be accepted by some FA. 

 
FA that accepts no language will be one of the two types:  

1. FA that have no final states. Like the following FA: 

- 
a

  
b 

 
a,b  

2. FA in which the final states cannot be reached. Like the 
following FA: 

 
 b  

a 
 

-   a,b a,b  +   

 a  b  

Or Like the following FA:   a,b 

- a,b a,b +   
 
 

a,b 
 

Example The following FA accept all strings from the alphabet {a,b} 
that start with a.  

b  
-

 a a,b 
 

The regular expression is: a(a+b)* + 
 

 
a,b 
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Example The following FA accept all strings from the alphabet {a,b} 
with double letter.  

 

 a a  
   

- b  a  + 
 b b 

a,b   

   
 
 

The regular expression is: (a+b)*(aa+bb) (a+b)* 
 

Example the following FA accepts the language defined by the regular 
expression: (a+b)(a+b)b(a+b)*  

 

  a  

- a,b a,b 
a,b   

   

  b +    

   a,b 
Example the following FA accepts only the word baa. 

- b a      a +  
 

a 
b

 
b

 a,b 
 
 
 
 

a,b 
 

Example the following FA accepts the words baa and ab. 
 

+ b a -   
b 

a a + 
  a b b 

a,b 
 

     

  a,b     
 
 
 
 

a,b 
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Example the following FA accepts the language defined by the regular 
expression: (a+ba*ba*b)+ 

- 
b     

a 
  

 a b b 
   

a + b a 
 
 
 

Example the following FA accepts the language defined by the regular 
expression: (a+ba*ba*b)* 

 

a 
+ b 

a 
 

-  

 b b   
 
 
 
 

 

a 
 

 

Example the following FA accepts only the word Λ. 
 

+ a,b  
- 

 
a,b 

 
 

Example the following FA accepts all words from the alphabet {a,b} 
that end with a. 

- 
a

 + 
 

b  
b a 

 
The regular expression for this language is: (a+b)*a 
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Example the following FA accepts all words from the alphabet {a,b} 
that do not end in b and accept Λ. 

 
+ b 
- a 

 

a b   
The regular expression for this language is: (a+b)*a + Λ 

 
Example the following FA accepts all words from the alphabet {a,b} 
with an odd number of a's. 

a  
- +  

a 

b b 
 

The regular expression for this language is: b*a(b*ab*ab*)* 
 

Example the following FA accepts all words from the alphabet {a,b} 
that have different first and last letters. 

b +  

a 
a 

- a b 
 

b a +  

b   

b  a 
 
 

The regular expression for this language is: a(a+b)*b + b(a+b)*a 
 

Example the following FA accepts the language defined by the regular 
expression (even-even): [aa+bb+(ab+ba)(aa+bb)*(ab+ba)]* 

b  
+ 

- b 
 

a a a a 
 
 

b 
 

b
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Converting From NFA to DFA 

 
Ex (1):-convert the following NFA into an equivalents DFA 
 

 
Solution:- 
S ({A}, 0) = Ф 
S ({A}, 1) = {A, B}     new node 
S ({A, B}, 0) = {A, C}  new node 
S ({A, B}, 1) = {A, B} 
S ({A, C}, 0) = Ф 
S ({A, C}, 1) = {A, B, X}    new node 
S ({A, B, X}, 0) = {A, C} 
S ({A, B, X}, 1) = {A, B} 
 
   0 1 

{A} Ф {A, B} 

{A, B} {A, C} {A, B} 

{A, C} {Ф} {A, B, X} 

{A, B, X} {A, C} {A, B} 
{Ф} {Ф} {Ф} 
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Solution:- 
S ({S}, a) = {A}    new node 
S ({S}, b) = {B}    new node 
S ({A}, a) = {A, C}    new node 
S ({A}, b) = Ф 
S ({B}, a) = Ф 
S ({B}, b) = {B, C}      new node 
S ({A, C}, a) = {A, C} 
S ({A, C}, b) = Ф 
S ({B, C}, a) = Ф 
S ({B, C}, b) = {B, C} 
 

Ex (2):-convert the following NFA into an equivalents DFA 
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THE NFA WITH -MOVES 
 
If a finite automata is modified to permit transitions without input symbols, 
along with zero, one, or more transitions on the input symbols, then we get an 
NFA with ‘ -moves,’ because the transitions made without symbols are called 
" -transitions." 

 
Consider the NFA shown in.   

 
 
 
 
 
 
 
 

Finite automata with Î-moves. 
 

This is an NFA with Î-moves because it is possible to transition from state q0 to 
q1 without consuming any of the input symbols. Similarly, we can also 
transition from state q1 to q2 without consuming any input symbols. Since it is a 
finite automata, an NFA with -moves will also be denoted as a five-tuple: 

  
 
 
where Q, , q0, and F have the usual meanings, and  defines a mapping from   

 
 
(to take care of the -transitions as well as the non -transitions). 

 
 
Since x is a member of *, and there may exist zero, one, or more transitions from a state on an input symbol, we 

define a new transition function,  , which defines a mapping from 2Q × * to 2Q. If x is written as wa, where a is the 
last symbol of x and w is a string made of remaining symbols of x then:  
 
 
 

since 1 defines a mapping from 2Q × * to 2Q.  
 
 
 
such that P contains at least one member of F and:  
 
 
 
 
 
 
 

../../../../DOCUME~1/pferguso/LOCALS~1/Temp/Charles.River.Media.Algorithms.For.Compiler.Design.eBook-LiB.chm/7264final/images/fig2-4_0.jpg
../../../../DOCUME~1/pferguso/LOCALS~1/Temp/Charles.River.Media.Algorithms.For.Compiler.Design.eBook-LiB.chm/7264final/images/fig2-4_0.jpg
../../../../DOCUME~1/pferguso/LOCALS~1/Temp/Charles.River.Media.Algorithms.For.Compiler.Design.eBook-LiB.chm/7264final/images/fig2-4_0.jpg
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For example, in the NFA with -moves, given above, if x = 01, then to find out whether x is accepted by the automata 
or not, we proceed as follows:  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Therefore: 
 
 -closure(1 (-closure (q0), 01) = -closure({q1}) = {q1, q2} Since q2 is a final state, x = 01 is accepted by the 

automata.
 
 

Equivalence of NFA with -Moves to NFA Without -
Moves 
 

For every NFA with -moves, there exists an equivalent NFA without 

-moves that accepts the same language. To obtain an equivalent NFA 

without1 -moves, given an NFA with -moves, what is required is an 

elimination of -transitions from a given automata. But simply eliminating the 

-transitions from a given NFA with -moves will change the language 

accepted by the automata. Hence, for every -transition to be eliminated, we 

have to add some non--transitions as substitutes in order to maintain the 
language's acceptance by the automata. Therefore, transforming an NFA with 

-moves to and NFA without -moves involves finding the non--transitions 

that must be added to the automata for every -transition to be eliminated. 
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Consider the NFA with -moves shown in   
 
 
 
 
 
 
 
 
 
Therefore, by adding these non- -transitions, and by making the initial state one of the 
final states, we get the automata shown in.   
 
 
 
 
 
 
 
 
 
 
 
 
 

Therefore, when transforming an NFA with -moves into an NFA without -

moves, only the transitions are required to be changed; the states are not 

required to be changed. But if a given NFA with q0 and -moves accepts  

(i.e., if the -closure (q0) contains a member of F), then q0 is also required to 

be marked as one of the final states if it is not already a member of F. Hence: 
 

If M = (Q, , , q0, F) is an NFA with -moves, then its equivalent NFA without -
moves will be M1 = (Q, , 1, q0, F1) 

 
where 1 (q, a) = -closure(  (-closure(q), a)) 

 
and  

F1 = F È (q0) if Î-closure (q0) contains a member of F 
 

F1 = F otherwise 
 

 
 
 
 
 
 
 
 

../../../../DOCUME~1/pferguso/LOCALS~1/Temp/Charles.River.Media.Algorithms.For.Compiler.Design.eBook-LiB.chm/7264final/images/fig2-6_0.jpg
../../../../DOCUME~1/pferguso/LOCALS~1/Temp/Charles.River.Media.Algorithms.For.Compiler.Design.eBook-LiB.chm/7264final/images/fig2-6_0.jpg
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For example, consider the following NFA with Î-moves: 

 
M=({q0,q1,q2},{0,1}, δ, q0, {q2}) 

 
Where 

 
δ 0 1 λ 
q0 {q0} Ф {q1} 
q1 Ф {q1} {q2} 
q2 Ф {q2} Ф   

Its equivalent NFA without λ- moves will be: 
 

M=({q0,q1,q2},{0,1}, δ, q0, {q0,q2}) 
 

δ 1 0 1 
q0 {q0,q1,q2} {q1,q2} 
q1 Ф {q1,q2} 
q2 Ф {q2} 

../../../../DOCUME~1/pferguso/LOCALS~1/Temp/Charles.River.Media.Algorithms.For.Compiler.Design.eBook-LiB.chm/7264final/images/fig2-6_0.jpg
../../../../DOCUME~1/pferguso/LOCALS~1/Temp/Charles.River.Media.Algorithms.For.Compiler.Design.eBook-LiB.chm/7264final/images/fig2-6_0.jpg
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FINITE AUTOMATA WITH OUTPUT 
          Moore machine and Mealy machine. 

 
We shall investigate two different models for FA's with output 
capabilities; these are Moore machine and Mealy machine. 

 
A Moore machine is a collection of five things:  

1. A finite set of states q0,q1,q2,… where q0 is designed as the start 
state.  

2. An alphabet of letters for forming the input string ∑= { a, b, c, …}. 
3. An alphabet of possible output characters Г = { x, y, z, …}. 
4. A transition table that shows for each state and each input letter 

what state is reached next. 
5. An output table that shows what character from Г is printed 

by each state that is entered. 
 

A Moore machine does not define a language of accepted words, since 
every input string creates an output string and there is no such thing as a 
final state. The processing is terminated when the last input letter is 
read and the last output character is printed. 

 
Example  

Input alphabet: ∑ = {a, b} 
Output alphabet: Г = {0, 1} 
Names of states: q0, q1, q2, q3. (q0 = start state) 

 
 Transition table Output table 

Old state New state (the character printed 
 After input a after input b in the old state) 

-q0 q1 q3 1 
q1 q3 q1 0 
q2 q0 q3 0 
q3 q3 q2 1 

 

The Moore machine is:  b 

q0/1 a q1/0   
 

a 
b

 a 
 

b 
q2/0 q3/1  

b 
 

a 
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Note: the two symbols inside the circle are separated by a slash "/", on the 
left side is the name of the state and on the right is the output from that 
state.  

If the input string is abab to the Moore machine then the 
output will be 10010. 

 
Example  

The following Moore machine will "count" how many times 
the substring aab occurs in a long input string. 

 

b 
a 

  a   

q0/0 q1/0 a q2/0 b q3/1  
    

b 
a 

 
b 

 
The number of substrings aab in the input string will be exactly 
the number of 1's in the output string. 

 

Input string  a a a b a b b a a b b 
State q0 q1 q2 q2 q3 q1 q0 q0 q1 q2 q3 q0 

Output 0 0 0 0 1 0 0 0 0 0 1 0 
 
 
 
 
 
 

A Mealy machine is a collection of four things:  
1. A finite set of states q0,q1,q2,… where q0 is designed as the start 

state. 
2. An alphabet of letters for forming the input string ∑= { a, b, c, …}. 
3. An alphabet of possible output characters Г = { x, y, z, …}. 
4. A pictorial representation with states represented by small circles 

and directed edges indicating transitions between states. Each 
edge is labeled with a compound symbol of the form i/o where i is 
an input letter and o is an output character. Every state must have 
exactly one outgoing edge for each possible input letter. The edge 
we travel is determined by the input letter i; while traveling on the 
edge we must print the output character o. 
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Example  
The following Mealy machine prints out the 1's complement of 
an input bit string.  

1/0,0/1  
 

 q0 
 

If the input is 001010 the output is 110101. This is a case where the 
input alphabet and output alphabet are both {0,1}. 

 
Example  

The following Mealy machine called the increment machine. 
 

0/0,1/1  
 

no 
carry 

0/1 
 

start 0/1 
1/0 

 
carry 

 
 

1/0 
 

If the input is 1011 the output is 1100. 
 

Definition  
Given the Mealy machine Me and the Moore machine Mo, which 

prints the automatic start -state character x, we will say that these two 
machines are equivalent if for every input string the output string 
from Mo is exactly x concatenated with the output from Me. 

 
Note: we prove that for every Moore machine there is an 
equivalent Mealy machine and for every Mealy machine there is an 
equivalent Moore machine. We can then say that the two types of 
machine are completely equivalent. 

 
Theorem  

If Mo is a Moore machine, then there is a Mealy machine Me that 
is equivalent to it. 

 
Proof  

The proof will be by constructive algorithm. 
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a a/t  

b q4/t Becomes b/t q4 
    

b b/t  

 

Example  
Below, a Moore machine is converted into a Mealy machine: 

 

a 
q1/1 

a a,b a/1 
q1 a/1 

a/1,b/1    

q0/0 b  
q3/1  becomes q0 b/0 q3  

b q2/0  b b/0 q2 b/1  

 a    a/0     
Theorem  

For every Mealy machine Me there is a Moore machine Mo that 
is equivalent to it. 

 
Proof  

The proof will be by constructive algorithm.   

a/1 
a 

b/1 q4 becomes b q4/1 
    

b/1    b 
 

If there is more than one possibility for printing as we enter the state, 
then we need a copy of the state for each character we might have to 
print. (we may need as many copies as there are character in Г).  

 

a/0 b/1 a b/1 b/1   

b/1 q4 becomes b q4 
1/0 b q4 

2/1 
b/0  a/1    a/1  a/1 
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     a    

a/0 q6    q4 
1/0 a/0 

q4 

a/0  
Becomes b 

  
q6     

        

b/1     q4 
2/1 a/0 

Example     b    
         

Convert the following Mealy machine to Moore machine: 
    b/1     

    q1 
a/1 

    
    a/0    b/0         

   q0 a/1 q2  
   

b/0 
     

    a/0     
         

   b/1      

    q3      

   Mealy machine     

     b     

    q1/1 
a 

    
    a   

b        
        

 
q0 

2/1 
q0 

1/0 q2 
1/0 a 

 a a a     
   

b 
  

b 
 

   b     
         

   b 
q3/0 q2 

2/1 
 

       
Moore machine 

 
Example  

Draw the Mealy machine for the following sequential circuit:  
 
 

input 
   

A 
  

B 
 

output NAND  DELAY OR       
           

           
    OR       
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First we identify four states:  
q0 is A= 0 B= 0  
q1 is A= 0 B= 1 
q2 is A= 1 B= 0 
q3 is A= 1 B= 1  

the operation of this circuit is such that after an input of 0 or 1 the 
state changes according to the following rules: new B= old A 

 
new A = (input) NAND (old A OR old B)  
output = (input) OR (old B) 
Suppose we are in q0 and we receive the input 0. 
new B = old A = 0  
new A = 0 NAND (0 OR 0) 

= 0 NAND 0 
= 1  

output = 0 OR 0 = 0 
the new state is q2 (since new A=1, new B=0) 
if we are in state q0 and we receive the input 1: 
new B= old A = 0 
new A = 1 NAND (0 OR 0) =1 
output = 1 OR 0 =1  
the new state is q2. 
We repeat this process for every state and for each input to produce 
the following table:  

Old state After input 0  After input 1 
 New state Output  New state Output 

q0 q2  0  q2 1 
q1 q2  1  q0 1 
q2 q3  0  q1 1 
q3 q3  1  q1 1 

 
1/1 

 q0 
0/0,1/1 

 
  

0/1 
 

 q1 q2 
 

 

1/1 
 

   

0/0 

 

 1/1 q3   
 
 

0/1  
Mealy machine 
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A phrase-Structure Grammar  
A phrase-Structure Grammar, called PSG, is a collection of three things:  

1. An alphabet ∑ of letters called terminals. 
2. A set of symbols called nonterminals that includes the start symbol S. 
3. A finite set of productions of the form: 

String 1 → String 2 
Where string 1 can be any string of terminals and nonterminals that contains 
at least one nonterminals and where string 2 is any string of terminals and 
nonterminals whatsoever. 

 
Definition:  
The language generated by the PSG is the set of all strings of terminals that 
can be derived starting at S. 

 
Example: the following is a phrase-structure grammar over Σ={a,b} with 
nonterminals X and S: 
S XS 
X aX | a 
aaaX  ba 
In this language we can have the following derivation: 
S  XS XXS 

XXXS 
XXX 
aXXX 
aaXXX 
aaaXXX 
baXX 
baaXX 
baaaX 
bba  

 
Example:  
S aSBA  
S abA 
AB    BA 
bB  bb 
bA  ba 
aA  aa  
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A context-sensitive grammar (CSG)  
A context-sensitive grammar (CSG) is a formal grammar in which the 

left-hand sides and right-hand sides of any production rules may be 
surrounded by a context of terminal and nonterminal symbols. 

 
Definition  

A formal grammar G = (N, Σ, P, S) 
Where N the Non - Terminal  

Σ the terminal 
P is context-sensitive if all rules in P are of the form αAβ → αγβ 

where A Є N (i.e., A is a single nonterminal),  
α,β Є (N U Σ)* ( α and β are strings of nonterminals and terminals) 

and γ Є (N U Σ)+ ( γ is a nonempty string of nonterminals and terminals).  
A rule of the form S → λ provided S does not appear on the right side of any 
rule where λ represents the empty string is permitted.  
The addition of the empty string allows the statement that the context 
sensitive languages are a proper superset of the context free languages, 
rather than having to make the weaker statement that all context free 
grammars with no →λ productions are also context sensitive grammars. 

 
Example: This grammar generates the context sensitive language:  
1.  
2.  
3.  
4.  
5.  
6.  
7.  
8.  
9.   
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CONTEXT FREE GRAMMAR 
 
 
 

A context free grammar, called CFG, is a collection of three things: 
 

1. An alphabet ∑ of letters called terminals from which we are going 

to make strings that will be the words of a language. 

2. A set of symbols called nonterminals, one of which is the symbol 

S, standing for "start here". 
 

3. A finite set of production of the form: 
 

One nonterminal → finite string of terminals and/ or 

nonterminals Where the strings of terminals and nonterminals can 

consist of only terminals or of any nonterminals, or any mixture of 

terminals and nonterminals or even the empty string. We require that 

at least one production has the nonterminal S as its left side. 
 
 

Definition 
 

The language generated by the CFG is the set of all strings of terminals 

that can be produced from the start symbol S using the production as 

substitutions. A language generated by the CFG is called a context free 

language (CFL). 
 

Example 
 

Let the only terminal be a. 
 

Let the only nonterminal be S. 
 

Let the production be: 
 

S → aS 
 

S → Λ 
 

The language generated by this CFG is exactly a*. 
 

In this language we can have the following derivation: 
 

S → aS → aaS → aaaS → aaaaS → aaaaaS → aaaaaΛ = aaaaa 
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Example 
 

Let the only terminal be a. 
 

Let the only nonterminal be S. 
 

Let the production be: 
 

S → SS  
S → a 
S → Λ  

The language generated by this CFG is also just the language a*. 
 

In this language we can have the following derivation: 
 

S → SS → SSS → SaS → SaSS → ΛaSS → ΛaaS → ΛaaΛ = aa 
 
 
 

Example 
 

Let the terminals be a, b. And the only nonterminal be S. 
 

Let the production be: 
 

S → aS  
S → bS  
S → a 
S → b 

The language generated by this CFG is (a+b)+. 
 

In this language we can have the following derivation: 
 

S → bS → baS → baaS → baab 
 
 
 

Example 
 

Let the terminals be a, b. And the only nonterminal be S. 
 

Let the production be: 
 

S → aS  
S → bS 
S → Λ 

The language generated by this CFG is (a+b)*. 
 

In this language we can have the following derivation: 
 

S → bS → baS → baaS → baaΛ=baa 
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Example 
 

Let the terminals be a, b,Λ. And the nonterminals be S,X,Y. 
 

Let the production be: 
 

S → X  
S → Y 
X → Λ 
Y → aY  
Y → bY 
Y → a 
Y → b 

The language generated by this CFG is (a+b)*. 
 
 

Example 
 

Let the terminals be a, b,Λ. And the nonterminals be S,X,Y. 
 

Let the production be: 
 

S → XY  
X → Λ  
Y → aY 
Y → bY 
Y → a 
Y → b 

The language generated by this CFG is (a+b)+. 
 

Example 
 

Let the terminals be a, b. 
 

Let the nonterminals be S,X. 
 

Let the production be: 
 

S → XaaX  
X → aX  
X → bX 
X → Λ 

The language generated by this CFG is (a+b)* aa(a+b)*. 
 

To generate baabaab we can proceed as follows: 
 

S→XaaX→bXaaX→baXaaX→baaXaaX→baabXaaX→baabΛaaX=baabaaX 

→baabaabX→baabaabΛ=baabaa
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Trees 
 

Example  
S → AA 
A → AAA | bA | Ab | a 

 
If we want to produce the word bbaaaab, the tree will be:  

 S      

A   A   

b A  A A A 
 

a a 
   

     
      

    A   b 
b  A 

a      
  a       

This diagram is called syntax tree or parse tree or generation tree or 
production tree or derivation tree. 

 
Example  

S → (S) | S&S | ~S | p| q 
The derivation tree for the word (~ ~ p & ( p & ~ ~ q )) will be: 

 
S  

 
( S )  

 
S & S  

~
 S ( S ) 

  

~
 S S & S 

 
 

p p 
~

 S  
~ q

 
 

Example 
S → S + S | S* S | number  

Does the expression 3+4*5 mean (3+4)*5 which is 35 or does it 
mean 3+(4*5) which is 23? 
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We can distinguish between these two possible meaning for the 
expression 3+4*5 by looking at the two possible derivation trees that 
might have produced it. 

 
         S                  S   
      

S 
   

S 
             

S 
   

S       +         or     * 
          

S 

   

S 
    

S 
   

S 
  

                         
      3   *         + 5 
                                  
         4    5       3    4   
   S            S       

S 
     

S 
   

S 
                   

                         
                            

+       

3  
    

S 
           

      

+  3 
    

20 
    

                       

    

S 

   

S 
    

+ 
   

23 
                 
                      

3 
  

* 
      

S 
   

S 
      

 
 

 
     *  

        

   

             

               

                                  
   

4  
   

5 
                      

           4     5          

 Or                                

    S             S        S      
 

S 
   

S 
     

S 
   

S 7 
  

5 35  *       *  * 
   

S 
     

3 
    

4 
             

S   +  5     +  5              
3 4  

Example  
S → AB  
A → a 
B → b 

S → AB → aB → ab or S → AB → Ab → ab 
 

  S   S 

A B A B 
        
a b a b  

 
There is no ambiguity of interpretation. 
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Definition  
A CFG is called ambiguous if for at least one word in the language that it 
generates there are two possible derivations of the word that correspond 
to different syntax trees. 

 
Example  
The CFG for palindrome 
S → aSa | bSb |a |b | Λ 

 
S → aSa → aaSaa → aabaa 

 
S  

 
a S a  

 
a S a  

 
b 

 
The CFG is unambiguous. 

 
Example 

S → aS |Sa | a  
In this case the word a3 can be generated by four different trees: 

 S S S  S  

a S a  S S a S a 
  

a S S   
a 

a  S  S   
a 

           
 a a a  a    

The CFG is therefore ambiguous.  
The same language can be defined by the CFG: 
S → aS | a 
For which the word a3 has only one production tree: 

 
S  

 
a S  

 
a S  

 
a 

This CFG is not ambiguous. 
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REGULAR GRAMMARS 
 
 
 
 
Note : all regular languages can be generated by CFG's, and so can 
some non-regular languages but not all possible languages. 

 
Example  

Consider the FA below, which accepts the language of all 
words with a double a: 

 

-S 
a 

M 
a 

+F 
b 

 
      
b a,b 

 
All the necessary to convert it to CFG is that: 

 
1. every edge between states be a production: 

 
 

X c Y becomes   X→ cY   
and 

 
2. every production correspond to an edge between states:  

X→ cY comes from X c Y  
 

or to the possible termination at a final state:  
X→ Λ 

only when X is a final state. 
 

So the production rules of our example will be: 
 

S → aM | bS  
M → aF | bS 
F →aF | bF | Λ 

 
Definition  
For a given CFG a semiword is a string of terminals (maybe none) 
concatenated with exactly one nonterminal (on the right), for example:  

(terminal) (terminal) . . . (terminal) (Nonterminal) 
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Example  
Consider the following FA with two final states: 

 
 

S± 
a 

M+ 
a 

F 
b 

 
    

b    a,b   
So the production rules of our example will be:  
S → aM | bS | Λ 
M → aF | bS | Λ 
F →aF | bF 

 
Theorem  
All regular languages can be generated by CFG's. This can be stated as:  
All regular languages are CFL's. 

 
Example  
The language of all words with an even number of a's (with at least 
some a's) is regular since it can be accepted by this FA: 

 
a  

S- 
a

 M a F+ 
 

b b b 
 

We have the following set of productions:  
S → aM | bS  
M → aF | bM 
F →aM | bF | Λ 
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linear grammar 
 

A grammar is linear if it is context-free and all of its productions' 
right hand sides have at most one nonterminal.  
A linear language is a language generated by some linear grammar. 

 
Example  
A simple linear grammar is G with N = {S}, Σ = {a, b}, P with start symbol 

S and rules  
S → aSb 
S → Λ  

It generates the language  
 

Relationship with regular grammars:  
Two special types of linear grammars are the following: 
1. the left-linear or left regular grammars, in which all 

nonterminals in right hand sides are at the left ends;  
2. the right-linear or right regular grammars, in which all 

nonterminals in right hand sides are at the right ends. 
 

These two special types of linear grammars are known as the regular 
grammars; both can describe exactly the regular languages.  
Another special type of linear grammar is the linear grammars in which 
all nonterminals in right hand sides are at the left or right ends, but not 
necessarily all at the same end. 

 
By inserting new nonterminals, every linear grammar can be brought into  
this form without affecting the language generated. For instance, the rules of 
G above can be replaced with 
S → aA 
A → Sb 
S → Λ 
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CHOMSKY NORMAL FORM (CNF) 

 
 
 

Theorem 
 

If L is a context-free language generated by CFG that includes Λ-

productions, then there is a different CFG that has no Λ-production that 

generates either the whole language L(if L does not include the word 

Λ) or else generates the language of all the words in L that are not Λ. 
 
 

Definition 
 

In a given CFG, we call a nonterminal N nullable if: 
 

• There is a production: N→ Λ 
 

Or 
 

• There is a derivation that start at N and leads to Λ:  N→…→ Λ 
 
 
 

Example 
 

Consider the CFG: 
 

S → a| Xb| aYa 
 

X → Y | Λ 
 

Y → b | X 
 

X and Y are nullable. 
 

The new CFG is: 
 

S → a| Xb| aYa| b| aa 
 

X → Y 
 

Y → b | X 
 

Example 
 

Consider the CFG: 
 

S → Xa 
 

X → aX| bX | Λ 
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X is the only nullable nonterminal. 
 

The new CFG is: 
 

S → Xa| a 
 

X → aX| bX |a| b 
 
 
 

Example 
 

Consider the CFG: 
 

S → XY 
 

X → Zb 
 

Y→ bW 
 

Z → AB 
 

W→ Z 
 

A → aA| bA| Λ 
 

B → Ba| Bb| Λ 
 

A, B, W and Z are nullable. 
 

The new CFG is: 
 

S → XY 
 

X → Zb| b 
 

Y→ bW| b 
 

Z → AB| A| B 
 

W→ Z 
 

A → aA| bA| a| b 
 

B → Ba| Bb| a| b 
 
 
 

Definition 
 

A production of the form: One Nonterminal → One 

Nonterminal is called a unit production. 
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Theorem 
 

If there is a CFG for the language L that has no Λ-production, then 

there is also a CFG for L with no Λ-production and no unit production. 

Example 
 

Consider the CFG: 
 

S → A| bb 
 

A → B| b 
 

B → S| a 
 
 
 

S → A gives  S → b 

S → A → B gives S → a 

A → B gives A → a 

A → B → S gives A → bb 

B → S gives B → bb 

B → S → A gives B → b 
 

The new CFG for this language is: 
 

S → bb| b| a 
 

A → b| a| bb 
 

B → a| bb| b 
 
 
 

Theorem 
 

If L is a language generated by some CFG then there is another CFG that 

generates all the non- Λ words of L, all of these productions are of one 

of two basic forms: 
 

Nonterminal → string of only Nonterminals 
 

Or 
 

Nonterminal → One Terminal 
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Example 
 

Consider the CFG:  

S → X1| X2aX2| aSb| 

b X1 → X2X2| b 

X2 → aX2| aaX1 
 

Becomes:  

S →X1 
 

S →X2AX2 

S →ASB S 

→B 
 

X1 → X2X2  

X1 → B 
 

X2 → AX2  

X2 → AAX1 
 

A→ a 
 

B → b 
 

Example 
 

Consider the CFG: 
 

S → Na 
 

N → a| b 
 

Becomes: 
 

S → NA  
N → a| b 
A → a  

Theorem 
 

For any CFL the non- Λ words of L can be generated by a grammar in 

which all productions are of one of two forms: 

Nonterminal → string of exactly two Nonterminals 
 

Or 
 

Nonterminal → One Terminal 
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Definition 
 

If a CFG has only productions of the form: 
 

Nonterminal → string of two Nonterminals 
 

Or of the form: 
 

Nonterminal → One Terminal 
 

It is said to be in Chomsky Normal Form (CNF). 
 
 
 

Example 
 

Convert the following CFG into CNF: S→ aSa| bSb| a| b| aa| bb 
 
 
 

S→ASA 
 

S→ BSB 
 

S→AA 
 

S→BB 
 

S→a 
 

S→b 
 

A→a 
 

B→b 
 

The CNF:  

S→AR1  

R1→SA 
 

S→ BR2  

R2→ SB 
 

S→AA 
 

S→BB 
 

S→a 
 

S→b 
 

A→a 
 

B→b 
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Example 
 

Convert the following CFG into CNF: 
 

S→bA| aB 
 

A→ bAA| aS| a 
 

B→aBB| bS| b 
 

The CNF: 
 

S→YA| XB  

A→ YR1| XS| a 
 

B→XR2| YS| b 
 

X→ a 
 

Y→ b  

R1→ AA 
 

R2→ BB 
 

Example 
 

Convert the following CFG into CNF: 
 

S→ AAAAS 
 

S→ AAAA 
 

A→ a 
 

The CNF:  

S→ AR1  

R1→ AR2 
 

R2 → AR3  

R3→ AS 
 

S → AR4  

R4→ AR5  

R5→ AA 
 

A→ a
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PUSHDOWN AUTOMATA (PDA)  
Definition 
A PDA is a collection of eight things: 

1. An alphabet ∑ of input letters. 
2. An input TAPE (infinite in one direction). Initially the string of 

input letters is placed on the TAPE starting in cell i. The rest of 
the TAPE is blanks. 

3. An alphabet Гof STACK characters. 
4. A pushdown STACK (infinite in one direction). Initially 

the STACK is empty (contains all blanks) 
5. One START state that has only out_adges, no in-edges.   

START 
 
 
 
 

6. HALT states of two kinds: some ACCEPT and some REJECT 
they have in-edges and no out-edges.  

 
 ACCEPT                                                                REJECT 

 

7. Finitely many non branching PUSH states that introduce 
characters onto the top of the STACK. they are of the form:  

 
PUSH X 

 
 

Where X is any letter in Γ.  
8. Finitely many branching states of two kinds: 

i. States that read the next unused letter from the TAPE.  
 

READ 
 
 

 

Which may have out-edges labeled with letters from ∑ and the  
blank character ∆, with no restrictions on duplication of labels  
and no insistence that there be a label for each letter of ∑, or ∆. 

ii. States that read the top character of STACK. 
 

    POP     
 
 
 

Which may have out-edges labeled with letters from Гand the 
blank character ∆, again with no restrictions. 
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Note: we require that the states be connected so as to become a connected 
directed graph. 

 
Theorem  
For every regular language L there is some PDA that accepts it. 

 
Proof  
Since L is regular, so it is accepted by some FA, then we can convert FA 
to PDA (as in the following example). 

 

Example      

 
- 

a  
+ 

 
 

b 
  

     

Becomes: 
b   a  

     
  START    

    b  

b  READ a READ 
∆

  ACCEPT 
     

  ∆  a  

  REJECT    

Example  
a 

 
a 

 

- 
  

+  
b 

  
       

b a,b 
 

Becomes:   
 START   a,b  
     

   b 
a 

 
 

READ 
a 

READ 
∆

  ACCEPT b  READ 
     

 ∆  ∆   

 REJECT  REJECT   
 

Note: we can find PDA accepts some non regular languages(as in the 
following example). 
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Example 
The language accepted by this PDA is exactly: {anbn,n=0,1,2,…}   

START 
 
 

PUSH a       a READ 
∆  

POP 

a,b 
 

REJECT   
 b  

b 
∆  

   ∆  

b,∆ a 
   

 
READ 

ACCEPT  
REJECT POP     

 a   
REJECT 

 
Or  

 
START 

 
 

PUSH X       a      READ 
∆  X 

 

POP   

b  
b 

∆ 
  ∆ 

X 
  

 
READ 

ACCEPT 
POP   

∆  a  
   

  REJECT   
 
 
 
 
 
 



53 
 

Example  
Consider the palindrome X, language of all words of the form: 
sXreverese(s), where s is any string in (a+b)*, such as {X aXa bXb aaXaa 
abXba aabXbaa …}  

 
START 

 
     a  

PUSH a 
 

READ 
X 

READ 
a  

a  POP  
    

b 
 

PUSH b 
 b  ∆ 

b    ∆ POP      
  

ACCEPT 
  

  POP    
 
Example  
odd palindrome ={a b aaa aba bab bbb …}  

 
START 

 
     a  

PUSH a 
 

READ 
a,b 

READ 
a  

a  POP  
    

b 
 

PUSH b 
 b  ∆ 

b    
∆ POP      

  

ACCEPT 
  

  POP   
 

Nondeterministic PDA  
Example 
Consider the language generated by CFG: S→S+S|S*S|4  

 
 

4   +   *    
    READ1   READ2   READ3 

START         ACCEPT 
  

+   * 
      

      S      ∆ 
       

POP 

 

∆ 
   

READ4 PUSH1 S 
          
           

      

S 
 

S 
     

            

    PUSH2 S    PUSH5 S   
           
              

              

    PUSH3 +      PUSH6 *  
              

              

    PUSH4 S      PUSH7 S  
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Now we trace the acceptance of the string: 4+4*4 
 

State Stack Tape 
start ∆ 4+4*4 
push1 S S 4+4*4 
pop ∆ 4+4*4 
push2 S S 4+4*4 
push3 + + S 4+4*4 
push4 S S+ S 4+4*4 
pop + S 4+4*4 
read1 + S +4*4 
pop S +4*4 
read2 S 4*4 
pop ∆ 4*4 
push5 S S 4*4 
push6 * * S 4*4 
push7 S S * S 4*4 
pop *S 4*4 
read1 *S *4 
pop S *4 
read3 S 4 
pop ∆ 4 
read1 ∆ ∆ 
pop ∆ ∆ 
read4 ∆ ∆ 
accept ∆ ∆ 

 
 
 

H.W 
Find a PDA that accepts the language: {ambnan, m=1,2,3,…,n=1,2,3,…} 
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TURING MACHINE 
 
 
 
 

Definition 
 

A Turing machine (TM) is a collection of six things: 
 

1. An alphabet ∑ of input letters. 
 

2. A TAPE divided into a sequence of numbered cells each 

containing one character or a blank. 

3. A TAPE HEAD that can in one step read the contains of a cell on 

the TAPE, replace it with some other character, and reposition 

itself to the next cell to the right or to the left of the one it has 

just read. 

4. An alphabet Гof character that can be printed on the TAPE by the 
 

TAPE HEAD. 
 

5. A finite set of states including exactly one START state from 

which we begin execution, and some (may be none) HALT states 

that cause execution to terminate when we enter them. The other 

states have no functions, only names: q1, q2, … or 1, 2, 3, … 

6. A program, which is a set of rules that tell us on the basis of the 

letter the TAPE HEAD has just read, how to change states, what to 

print and where to move the TAPE HEAD. We depict the program 

as a collection of directed edge connecting the states. Each edge is 

labeled with a triplet of information: (letter, letter, direction). The 

first letter (either ∆ or from ∑ or Γ) is the character that the TAPE 

HEAD reads from the cell to which it is pointing, the second letter 

(also ∆ or from Γ) is what the TAPE HEAD prints in the cell before 

it leaves, the third component, the direction, tells the TAPE HEAD 

whether to move one cell to the right(R) or to the left (L). 
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Note: TM is deterministic. This means that there is no state q that has 

two or more edges leaving it labeled with the same first letter. For 

example, the following TM is not allowed: 
 
 
 
 

(a,a,R) 
 

q1 

 
 
q2 

 
(a,b,L) 

 
q3 

 
 

Example 
 

Find TM that can accepts the language defined by the regular expression: 
 

(a+b)b(a+b)* 
(a,a,R) (b,b,R) (∆,∆,R)   

START 1 2       3      HALT 4 
(b,b,R) 

 
(a,a,R),  

                                                                          (b,b,R) 
 

Now we trace the acceptance of the string: aba 

1 → 2 → 3 → 3 → 4 
 

aba  aba aba∆ aba∆  aba∆∆ 
 
 
 

Example 
 

Find TM that can accepts the language {anbn} 
 
 

 (a,a,R), (B,B,R) (B,B,L) (B,B,R) 

START 1 
(a,A,R) (b,B,L) 

3 
(A,A,R) 

 2 5  
 

(∆,∆,R) 
 

(A,A,R) (a,a,L) 
HALT 4  

(a,a,L)   



57 
 

Now we trace the acceptance of the string: aaabbb 
 

aaabbb Aaabbb Aaabbb Aaabbb AaaBbb AaaBbb AaaBbb AaaBbb 

AaaBbb AaaBbb AaaBbb AAaBBb AAaBBb AAaBBb AAaBBb 

AAABBb AAABBb AAABBb AAABBB AAABBB AAABBB 

AAABBB AAABBB AAABBB AAABBB∆ HALT 
 
 

Example 
 

Find TM that can accepts the language palindrome.  
 

   (a,a,R), (b,b,R) (b,b,L), (a,a,L)  

   (a,∆,R) (∆,∆,L) (a,∆,L) 
4 

 (∆,∆,R)  
    

2 3 
   

       

     (∆,∆,R)     
    

(∆,∆,R) 
     

START 1 HALT 8 
    

     
   

(a,a,R), (b,b,R) (∆,∆,R) (b,b,L), (a,a,L) 

 

    
     

   (b,∆,R) (∆,∆,L) (b,∆,L) 
7 

 (∆,∆,R)  
    

5 6 
 

  

      

          
 

Let us trace the running of this TM on the input string: ababa       

1    →   2  →    2   →   2  →    2 →   2  → 3   → 
ababa  ∆baba ∆baba ∆baba ∆baba ∆baba∆ ∆baba 
                                        

 4    →  4   →    4 →   4  →   1 →   5 → 5   → 
∆bab∆   ∆bab∆ ∆bab∆  ∆bab∆   ∆bab∆ ∆∆ab∆   ∆∆ab∆ 
                                  

5    →  6   →    7 →   7  →   1 →   2 → 3   →8 
∆∆ab∆   ∆∆ab∆ ∆∆a∆∆   ∆∆a∆∆ ∆∆a∆∆   ∆∆∆∆∆ ∆∆∆∆∆   HALT 
                                           
H.W 

 
Find TM for even-even. 


