

University of Technology

Computer science Department

Algorithms Complexity

Lecturer : Eman shakir

Class: Third

Branch :A.I

1
st

 course 2024

Zainab Ali
\ 2023

Lecture (1)
INTRODUCTION

The term algorithm is universally used in
computer science to describe problem-solving
methods suitable for implementation as
computer programs they are central objects of
study in many, if not most, areas of the field.

INTRODUCTION

• Definition

• Data structure :they are objects created

during complicated methods of organizing
the data involved in the computation such as
list, stack, queue, tree, graph ,and double
ended queue and so on .

The Role of Algorithms in Computing

• Definition

• an algorithm is any well-defined computational

procedure that takes some value, or set of
values, as input and produces some value, or set
of values, as output. An algorithm is thus a
sequence of computational steps that transform
the input into the output. We can also view an
algorithm as a tool for solving a well-specified
computational problem.

The Role of Algorithms in Computing

• Example

• For example, one might need to sort a

sequence of numbers into increasing order
• formally define the sorting problem:

• • Input: A sequence of n numbers (a1, a2, ...,

an).
• • Output: A permutation (reordering) (a1’, a2’,

..., an’) of the input sequence such that
a1’≤a2’≤…≤an’.

The Role of Algorithms in Computing

• instance of a problem consists of the input
(satisfying whatever constraints are imposed
in the problem statement) needed to compute
a solution to the problem.

• An algorithm is said to be correct if, for every
input instance, it halts with the correct output.
We say that a correct algorithm solves the
given computational problem

• . An incorrect algorithm might not halt at all
on some input instances, or it might halt with
an answer other than the desired one.

Algorithm Properties

• • An algorithm possesses the following properties:
• 1– It must be correct.
• 2– It must be composed of a series of concrete steps.

• 3– There can be no ambiguity as to which step will

be performed next.
• 4– It must be composed of a finite number of steps.
• 5– It must terminate

• A computer program is an instance, or concrete

representation, for an algorithm in some
programming language.

Easy and Hard Problems

• 1- Eulerian Tour vs. Hamiltonian Tour
• • Eulerian Tours (Easy)
• – INPUT: A graph G = (V, E).

• – DECIDE: Is there a path that crosses every edge

exactly once and returns to its starting point?
• • Hamiltonian Tours (Hard)
• – INPUT: A graph G = (V, E).

• – DECIDE: Is there a path that visits every vertex

exactly once and returns to its starting point?

Easy and Hard Problems

• 2- Map Colorability

• • Map 2-colorability (Easy)
• – INPUT: A graph G=(V, E).
• – DECIDE: Can this map be
• Colored with 2 colors so that no
• two adjacent countries have the
• same color?
• • Map 3-colorability (Hard)
• – INPUT: A graph G=(V, E).
• – DECIDE: Can this map be colored with 3 colors so that no two

adjacent countries have the same color?
• • Map 4-colorability (Easy)
• – INPUT: A graph G=(V, E).
• – DECIDE: Can this map be colored with 4 colors so that no two

adjacent countries have the same color?

Easy and Hard Problems

• 3- Longest Path vs. Shortest Path

• • Longest Path (Hard)
• – INPUT: A graph G = (V, E), two vertices u, v of V, and

a weighting function on E.
• – OUTPUT: The longest path between u and v.
• No one is able to come up with a polynomial

time algorithm yet.
• Shortest Path (Easy)
• – INPUT: A graph G = (V, E), two vertices u, v of V, and

a weighting function on E.
• – OUTPUT: The shortest path between u and v.
• A greedy method will solve this problem easily

Easy and Hard Problems

• 4- Multiplication vs. Factoring
• • Multiplication (Esay)
• – INPUT: Integers x,y.
• – OUTPUT: The product x×y.
• • Factoring (Un-multiplying) (Hard)
• – INPUT: An integer n.

• – OUTPUT: If n is not prime, output two

integers x, y such that 1 < x, y < n and x × y = n.

Example:

• Algorithm fibonacci (n):
• Input: a nonnegative integer .
• Output: fib, the nth term of the fibonacci sequence.
1. if ≤ 1 then
2. =
3. Else
4. F1=0
5. F2=1
6. For i= 2 to n
7. Fib= f1+f2
8. F1=f2
9. F2=fib
10. End for
11. End if
12. Return fib

References

• ntroduction to algorithms,Thomas H. Cormen

,Charles E. Leiserson, Ronald L. Rivest,2001

• Algorthims design technique and

analysis,M.H.Alsuwaiyel,2002
• some websites

University of Technology

Computer science Department

Algorithms Complexity

Lecturer : Eman shakir

Class: Third

Branch :A.I

1
st

 course 2024
Second lecture

Why data structure and algorithms

• When programming you are an engineer and each engineer has a
bag of tools and tricks and the knowledge of which tool is the right
one for a given problem

• Data structure + Algorithms = program

• Flowchart : A graphical representation of an algorithm often used

in the design phase of programming to work out the logical flow of
a program

Symbols and meaning

Name Symbol Use in flowchart

Oval Is Used in flowchart denotes the beginning or end of the program

Flow line Denotes the direction of logic flow in a program

Parallelogram Denotes either input or output operation

Rectangle

Denotes a process to be carried out (e.g. addition)

Diamond Denotes a decision or branch to be made that a program should

 continue along one of two routes (e.g. if/then/else)

Some control structure

• Control structure like :sequencing ,looping , selecting

A.Do while loop

Some control structure

B. do until loop

Some control structure

C. Sequence

Some control structure

D.Selection

Pseudo code

Pseudo code is basically short English phrases used to explain specific tasks within
a program’s algorithm , it should not contain any specific computer languages.

Why is Pseudo code necessary ?

Ans /because it will save your time and efforts during the construction and
testing phase of program development

How do I write Pseudo code ?

Ans / consists mainly of executable statement

If you can not write it in Pseudo code you won’t be able to write it in C++ or Java

Pseudo code

• A flowchart and it’s equivalent Pseudo code

 read name, balance and interest

 compute interest as balance*rate

 write (display) name and interest

Pseudo code

Example : original program specification

• Write a program that obtains two integer numbers from the user .it will print out
the sum of these numbers

Variables required (names and types):

Int1: (integer) to store first no.

Int2: (integer) to store second no.

Sum : (integer) to store the sum of the numbers

Pseudo-code:

Prompt the user to insert first integer int1

Prompt the user to insert second integer int2

Compute the sum of the two inputs

Sum=int1+int2

Display an output prompt that explain the answer

Display the result

Algorithm Analysis

• Algorithms: A clearly specified finite set of instructions a
Computer follows to solve a problem

• Algorithm Analysis: a process of determining the amount of

time resource, etc. required when executing an algorithm .
Why we need algorithm analysis?

• Writing a working program is not good enough

• The program may be inefficient If the program is run on a large

data set then the running time becomes an issue

Algorithm Analysis

Algorithmic efficiency explained in a nutshell

we could say "Algorithm A is to twice as fast as Algorithm B” but in fact
this sort of statement isn't too meaningful, why ?

Because the proportion can change radically as the number of items are
changed Perhaps you increase the number of items by 50%, and now A is
three times as fast as B. Or you have half as many items and A and B are
now equal

What you need is a comparison that tells how an algorithm's Speed is
related to the number of items

Algorithm Analysis

• We only analyses Correct algorithms
• An algorithm is correct,
• if for every input instance it halts with the correct output
• Incorrect algorithms

- Might not halt at all on some input instance
- Might halt with other than the desired answer
• Analyzing an algorithm:
• Predicting the resources that the algorithms requires
Resources include
• Computational time (usually most important)

Running Time

• Running Time most algorithms transform input objects into
output objects

• The running time of an algorithm typically grows with the input size
• Average case time is often difficult to determine
• we focus on the worst case (upper - bound) running time.

- Easier to analyze

-crucial to applications such as games, finance and
robotics - occurs more often .

Algorithm analysis

Worst / average / Best case

• Worst-case running time of an algorithm
• The longest running time for any input of size n

• An upper bound on the running time for any input guarantee that the algorithm

will never take longer

Example: Sort a set of numbers in increasing order and the data is in decreasing order

The worst case can occur fairly often E.g. in searching a database for a particular piece of
information

Best case running time

• sort a set of numbers in increasing order and the data is already in increasing order

Algorithm analysis

Average case running time: May be difficult to define what
average means

Experimental studies

-write a program implementing the algorithm

-run the program with inputs of varying Size and composition

-Use a method to get an accurate -measure of the actual running
time - Plot the results

limitations of Experiments

-It is necessary to implement the algorithm which may be difficult

-Results may not be indicative of the running time on other inputs.
not included in the experiment

-In order to compare two algorithms the same hardware and
software Environments must be used

University of Technology

Computer science Department

Algorithms Complexity

Lecturer : Eman Shakir

Class: Third

Branch :A.I

1
st

 course 2024
Third lecture

Algorithm Analysis

Why do we analyze an algorithm

alg.1

Problem alg.2

alg.3

alg.4

Analysis of an algorithm helps us to

determine which alg. Is the best to solve

a problem

Algorithm analysis is based upon two factors :

1- CPU time (time complexity)

2- Main memory space (Space complexity) for a problem we can have more than one algorithm

(solution) and we want to decide the best one

Time & Space Complexity

(TC) Time Complexity: Amount of time taken by an algorithm to run
till its Completion

(SC) Space Complexity: Amount of space or, memory takes by an
alg. to run till its completion

Time Complexity of an alg. Can be Calculated by 2 Methods:

1) Posterior Analysis.
2) priori Analysis

TC & SC are dependent upon various things such as Hardware
, Processor, OS,etc

Time Complexity of an algorithm (equation)

T(P) = C(P) + R(P)

C(P) depends on : Compiler , software , language of Compiler (thing that is used for Compile time and decide compile time)

R(P) depends on :Processor , Hardware ,Type of Hardware is use of (thing that is used in Calculating run time and decide run
time)

C(p) = Compile time of program

R(p) = run time of program

Compiler is basically software

Processor is : is basically hardware

The most important things:

-language of compiler

-Type of Hardware

we can use any type of them

Priori and Postriori Analysis

• Priori Analysis: Here we determine time complexity of an algorithm
by just analyzing the statements inside it rather than running it on any
particular system

• Postriori Analysis: Here we determine time complexity of

an algorithm after running it on a specific system

Posteriori and Priori Analysis Features

Posteriori Analysis:

1) analysis of an alg. after running it on a specific system

2) it is dependent on language of Compiler and type of how It gives
exact answer
3) It gives exact answer
4)Answer changes from System to System

5)Relative analysis
6) Super Computer

Posteriori and Priori Analysis Features

Priori Analysis:

1)Analysis of an alg. Prior to running it on any system

2) It is independent on language of compiler & type of H.w
3) it gives an approximate answer
4) Same answer in any system
5) absolute Analysis

6) Super logic

University of Technology

Computer science Department

Algorithms Complexity

Lecturer : Eman shakir

Class: Third

Branch :A.I

1
st

 course 2024
Fourth lecture

ASYMPTOTIC NOTATIONS

Algorithmic Complexity:

complexity :is a numerical function T(n) - time versus the input
size n.

"Algorithmic Complexity", also called "Running Time" or
"Order of Growth", refers to the number of steps a
program takes as a function of the size of its inputs.

A given algorithm will take different amounts of time on the
same inputs depending on such factors as: processor speed;
instruction set, disk speed, brand of compiler and etc.

Algorithmic Complexity

• Asymptotically: The way around is to
estimate efficiency of each algorithm.

• Example :addition of two integers

• We will add two integers digit by digit (or bit

by bit), and this will define a "step" in our
computational model. the total
computational time

• T(n) = c * n

Algorithmic Complexity

• where c is time taken by addition of two bits
• N=steps(no of bits)

• The goal of computational complexity is

to classify algorithms according to their
performances

• T (n) = O (n2) says that an algorithm has a

quadratic time complexity.

Definition of "big O"

• For any monotonic functions f(n) and g(n)
from the positive integers to the positive
integers, we say that f(n) = O(g(n)) when there
exist constants c > 0 and n0 > 0 such that :

• f(n) ≤ c * g(n), for all n ≥ n0

• Algorithmic complexity is usually expressed in
1 of 2 ways. The first is the way used in lecture
- "logarithmic", "linear", etc. The other is
called Big-O notation. This is a more
mathematical way of expressing running time,
and looks more like a function. For example, a
"linear" running time can also be expressed as
O(n). Similarly, a "logarithmic" running time
can be expressed as O(log n).

Definition of "big O"

• Examples:
• 1 = O(n)
• n = O(n)
• log(n) = O(n)
• 2 n + 1 = O(n)

• The "big-O" notation is not symmetric: n =

O(n2) but n2 ≠ O(n).

Definition of "big O"

• Standard Method to Prove Big-Oh :
• 1. Choose 0= 1.

• 2. Assuming > 1, find/derive a C such that
F(n)/g(n) ≤ c *g(n)/g(n)=c

• This shows that > 1 implies () ≤ ().
• Keep in mind:

• N>1 implies 1 < ,n< N
2,

 N
2
 < N

3
 ,……

• • “Increase” numerator to “simplify” fraction.

Definition of "big O"

• Exercise: Let us prove n2 + 2 n + 1 = O(n2).
• Choose n0=1.
• Assuming n>1 then
• ()/ ()=n2 + 2 n + 1/n2 ≤n2+2n2+n2/n2=4
• Choose C =4. Note that 2 <2 21< 2.
• Thus, n2 + 2n + 1 is O(n2) because
• n2 + 2n + 1 ≤ 4n2 whenever > 1.
• H.W: Prove that 3 n + 7 = O(n)

Constant Time: O(1)

• An algorithm is said to run in constant time
if it requires the same amount of time
regardless of the input size. Examples:

• Given two numbers*, report the sum
• ● Given a list, report the first element
• ● array: accessing any element

Linear Time: O(n)

• An algorithm is said to run in linear time if its
time execution is directly proportional to the
input size, i.e. time grows linearly as input
size increases. Examples:

• array: linear search, traversing, find minimum
• ● Given a list of words, say each item of a list

• ● Given a list of numbers, add each pair

of numbers together
• (item 1 + item 2, item 3 + item 4, etc.)

Logarithmic Time: O(log n)

• An algorithm is said to run in logarithmic time
if its time execution is proportional to the
logarithm of the input size.

• Example:
• binary search

• Note, log(n) < n. Algorithms that run in O(log

n) does not use the whole input.

Quadratic Time: O(n2)

• An algorithm is said to run in quadratic time if
its time execution is proportional to the square
of the input size. A typical pattern of
quadratictime algorithms is performing a linear-
time operation on each item of the input (n
steps per item * n items = n2 steps). Examples:

• ● Compare each item of a list against all the

other items in the list
• Examples :
• bubble sort, selection sort, insertion sort

Cubic-Time Algorithms

• Cubic-Time Algorithms - O(n3) A cubic-time
algorithm is one that takes a number of steps

• proportional to n3. In other words, if the input

doubles, the number of steps is multiplied by
8. Similarly to the quadratic case, this could be
the result of applying an n2 algorithm to n

• items, or applying a linear algorithm to n2

items.

Exponential-Time Algorithms - O(2n)

• An exponential-time algorithm is one that
takes time proportional to 2n. In other words,
if the size of the input increases by one, the
number of steps doubles. Note that logarithms
and exponents are inverses of each other.
Algorithms in this category are often
considered too slow to be practical, especially
if the input is typically large. Examples:

• Generating fibonacci series .

Definition of "big Omega"

• To describe lower bounds we use the big-omega
notation f(n)=Ω(g(n)) usually defined by saying
for some constant c>0 and all large enough n,

• f(n) ≥ c g(n). This has a nice symmetry
property, f(n)=O(g(n)) if g(n)=Ω(f(n)).

• Examples

• n = Ω(1)
• n2 = Ω(n)
• n2 = Ω(n log(n))
• 2 n + 1 = Ω (n)

Definition of "big Theta"

• To measure the complexity of a particular
algorithm, means to find the upper and lower
bounds. A new notation is used in this case.
We say that f(n) = Θ(g(n)) if and only if f(n)
= O(g(n)) and f(n) = Ω(g(n)).

• Examples
• 2 n = Θ(n)
• n2 + 2 n + 1 = Θ(n2)

Analysis of Algorithms

• The term analysis of algorithms is used to describe
approaches to the study of the performance of
algorithms. In this course we will perform the following
types of analysis:

• 1- the worst-case runtime complexity of the algorithm is
the function defined by the maximum number of steps
taken on any instance of size a.

• 2- the best-case runtime complexity of the algorithm is the
function defined by the minimum number of steps taken
on any instance of size a.

• 3- the average case runtime complexity of the algorithm
is the function defined by an average number of steps
taken on any instance of size a.

University of Technology

Computer science Department

Algorithms Complexity

Lecturer : Eman shakir

Class: Third

Branch :A.I

1
st

 course 2024
Fifth lecture

COMPLEXITY EXAMPLES

Running Time Functions

Most algorithms have a primary parameter N, usually the
number of data items to be processed, which affects the running
time most significantly.

The parameter N might be:

-The degree of a polynomial

-The size of a file to be sorted or searched

-the number of nodes in a graph

Running Time Functions

• 1. (1) Most instructions of most programs are executed once or at
most only a few times. If all the instructions of a program have this
property, we say that its running time is constant

• (log N) When the running time of a program is logarithmic, the

program gets slightly slower as N grows. This running time commonly
occurs in programs which solve a big problem by transforming it into a
smaller problem by cutting the size by some constant fraction.

• 3. (N) When the running time of a program is linear, it generally is

the case that a small amount of processing is done on each input
element. When N is a million, then so is the running time.

Running Time Functions

• 4. (N log N) This running time arises in algorithms which solve a
problem by breaking it up into smaller sub problems, solving them
independently, and then combining the solutions

• 5. (N^2) When the running time of an algorithm is quadratic, it is

practical for use only on relatively small problems. Quadratic running
times typically arise in algorithms which process all pairs of data items
(perhaps in a double nested loop). Whenever N doubles, the running
time increases fourfold.

Running Time Functions

• 6. (N^3) Similarly, an algorithm which processes triples of data
items (perhaps in a triple-nested loop) has a cubic running time and is
practical for use only on small problems. Whenever N doubles, the
running time increases eightfold.

• 7. (2^N) Few algorithms with exponential running time are likely to

be appropriate for practical use, though such algorithms arise
naturally as “brute-force” solutions to problems. Whenever N doubles,
the running time squares.

Running Time Functions

• The O - Examples
• f (n) = 2n + 3; f (n) = O(n)
• f (n) = 6n^2 + 235; f (n) = O(n^2)
• f (n) = 6n + 567ln(n); f (n) = O(n)
• f (n) = 6n × ln(n); f (n) = O(n)
• f (n) = 2exp(n) + nln(n) + 456n; f (n) = O(exp(n))
• if we have a polynomial
• p(n) = aknk + ak-1nk-1 + … + a1n + a0

its growth is of the order nk:

p(n) = O(nk)

Big O and control structure: the following table can be used to assist in estimating the big
O performance of algorithm

Control structure Running time

Single assignment statement O(1)

Simple expression O(1)

The sequence Max *O(s1), O(s2), O(s3),…, O(sn),+
Statement1

Statement 2

If condition : Max [O(cond1),O(cond2)] worst case
st1

Else:

st2

For I in lista : O(n*s)=O(n) * O(s)
statement

Space complexity

• The (space) complexity of a program (for a given input) is the number of
elementary objects that this program needs to store during its execution.
This number is computed with respect to the size n of the input data.

• Note:

• We thus make the assumption that each elementary object needs

the same amount of space.

• The difference between space complexity and time complexity is that

space can be reused.

• Amount of computer memory required during the program execution, as

a function of the input size

How to Determine Complexities

• In general, how can you determine the running time of a piece of code?
The answer is that it depends on what kinds of statements are used.

• 1. Sequence of statements
• statement 1;-----------O(1)
• statement 2;
• ...
• statement k;
• Total time = time (statement 1) + time (statement 2) + ... + time (statement k)

• If each statement is "simple" (only involves basic operations) then the time for

each statement is constant and the total time is also constant: O(1). In the
following examples, assume the statements are simple unless noted otherwise.

How to Determine Complexities

• 2- if-then-else statements
• if (condition) :

Sequence of statements 1

• else :

sequence of statements 2

• Here, either sequence 1 will execute, or sequence 2 will execute. Therefore, the
worst-case time is the slowest of the two possibilities: max (time (sequence 1),
time (sequence 2)). For example, if sequence 1 is O(N) and sequence 2 is O(1)
the worst-case time for the whole if-then-else statement would be O(N).

How to Determine Complexities

• 3- for loops

for i in array :
sequence of statements

• The loop executes N times, so the sequence of statements also

executes N times. Since we assume the statements are O(1), the total
time for the for loop is N * O(1), which is O(N) overall.

How to Determine Complexities

• 4- Nested loops
• First we'll consider loops where the number of iterations of the inner

loop is independent of the value of the outer loop's index. For example:

for i in arrayA :

• for j in arrayB :

sequence of statements

The outer loop executes N times. Every time the outer loop executes, the
inner loop executes M times. As a result, the statements in the inner loop
execute a total of N * M times O(N*M)

If the stopping condition of the inner loop is j < N instead of j < M (i.e., the
inner loop also executes N times), the total complexity for the two loops is
O(N^2).

O(2^) –exponential time

Def Fibonacci(n) :

if n < = 1 :

return n

return Fibonacci(n-1)+Fibonacci(n-2)

• Exercise
• The following code is to find the biggest number in an array
• Def findBgstNum(ArrayS):

bgstNum=ArrayS[0]----------------------- O(1)
for I in range(1,len(ArrayS)):------------ O(n)

if ArrayS[i]> bgstNum:-------------- O(1)
bgstNum=ArrayS[i]--------------- O(1)

print(bgstNum)---------------------------- O(1)

So time complexity = O(n)

• Ex:/ what is the run time of the below code ?

• Def PS(arrayA):

sum=0-- O(1)

product=1--- O(1)

for I in arrayA:--- O(n)

sum+=1-- O(1)

for I in arrayA:--- O(n)

product *=I-- O(1)

print(“sum=“+str(sum) + “, product =“ + str(product))--------- O(1)

time complexity = O(n)

•

Def printarray(arrayA,arrayB):

for i in range(1,len(arrayA)):--O(a)

for j in range(1,len(arrayB)):-----------------------------------O(b)

if arrayA[i] > arrayB[j] :---------------------------------O(1)

print(str(arrayA*i+)+’,’

+str(arrayB[i]))--------------O(1)

a =length of array a

b=length of array b

time complexity = O(a*b)

University of Technology

Computer science Department

Algorithms Complexity

Lecturer : Eman shakir

Class: Third

Branch :A.I

1
st

 course 2024
Sixth lecture

ALGORITHM TYPES AND CLASSIFICATIONS

Different types of algorithms

Every algorithm falls under a certain class. Basically they are

1) Brute force
2) Divide and conquer
3) Decrease and conquer
4) Dynamic programming
5) Greedy algorithm
6) Transform and conquer
7) Backtracking algorithm and so on

ALGORITHM TYPES AND CLASSIFICATIONS

• Brute force algorithm

Brute force implies using the definition to solve the problem in a
straightforward manner. Brute force algorithms are usually the easiest to
implement, but the disadvantage of solving a problem by brute force is that
it is usually very slow and can be applied only to problems where input size
is small.

• Divide and conquer algorithm

In divide and conquer method, we divide the size of a problem by a
constant factor in each iteration. This means we have to process lesser and
lesser part of the original problem in each iteration. Some of the fastest
algorithms belong to this class. Divide and conquer algorithms have
logarithmic runtime.

ALGORITHM TYPES AND CLASSIFICATIONS

• Decrease and conquer algorithm

This kind of problem is same as divide and conquer, except, here we are decreasing
the problem in each iteration by a constant size instead of constant factor.

• Dynamic programming

Sometimes, a solution to the given instance of problem depends on the solution to
smaller instance of sub-problems. It exhibits the property of overlapping sub-
problems. Hence, to solve a problem we may have to recompute same values again
and again for smaller sub-problems. Hence, computing cycles are wasted.

To remedy this, we can use dynamic programming technique. Basically, in dynamic
programming, we “remember” the result of each sub-problem. Whenever we need it,
we will use that value instead of recomputing it again and again.

we are using more space to hold the computed values to increase the
execution speed drastically.

ALGORITHM TYPES AND CLASSIFICATIONS

A good example for a problem that has overlapping sub-problem is
the relation for Nth Fibonacci number.

It is defined as F(n)= F(n-1) + F (n-2) .

ALGORITHM TYPES AND CLASSIFICATIONS

The solution to this is to store each value as we compute it and
retrieve it directly instead of re calculating it. This transforms the
exponential time algorithm into a linear time algorithm.

Hence, dynamic programming is a very important technique to
speed up the problems that have overlapping sub problems.

ALGORITHM TYPES AND CLASSIFICATIONS

• Greedy algorithm

For many problems, making greedy choices leads to an optimal solution. These algorithms are applicable to optimization problems. In a
greedy algorithm, in each step, we will make a locally optimum solution such that it will lead to a globally optimal solution. Once a choice is
made, we cannot retract it in later stages. Proving the correctness of a greedy algorithm is very important, since not all greedy algorithms lead
to globally optimum solution.

For ex- consider the problem where you are given coins of certain denomination and asked to construct certain amount of money in
minimum number of coins. Let the coins be of 1, 5, 10, 20 cents If we want change for 36 cents, we select the largest possible coin first
(greedy choice). According to this process, we select the coins as follows-

20 36 -20 = 16

20+10 16–10=6

20+10+5 6-5=1

20+10+5+1=36.

For coins of given denomination, the greedy algorithm always works. But in general this is not true.

Consider the denomination as 1, 3, 4 cents To make 6 cents, according to greedy algorithm the selected coins are 4 + 1 + 1=6

But, the minimum coins needed are only 2 (3 + 3)

Hence, greedy algorithm is not the correct approach to solve the ‘change making’ problem.

ALGORITHM TYPES AND CLASSIFICATIONS

Transform and conquer algorithm

Sometimes it is very hard or not so apparent as to how to arrive at a
solution for a particular problem. In this case, it is easier to transform
the problem into something that we recognize, and then try to solve
that problem to arrive at the solution. Consider the problem of finding
LCM (least common multiple) of a number. Brute force approach of
trying every number and seeing if it is the LCM is not the best
approach. Instead, we can find the GCD (greater common divisor) of
the problem using a very fast algorithm known as Euclid’s algorithm
and then use that result to find the LCM as

LCM (a , b) = (a * b) / GCD (a , b).

ALGORITHM TYPES AND CLASSIFICATIONS

• GCD in Euclidean
• Ex: compute gcd for (48,18) using Euclidean
• Sol: divide 48 by 18 as
• (a=48/ b=18) = 2 reminder 12 (48 mod 18)
• (a=18/b=12) = 1 reminder 6 (18 mod 12)
• 12/6 = 2 reminder 0
• When the reminder is 0 we find the GCD and its 6
• GCD(a,b) = ? Write the relation as H.W. in recursion function

ALGORITHM TYPES AND CLASSIFICATIONS

• Backtracking algorithm:

Backtracking approach is very similar to brute force approach. But the difference
between backtracking and brute force is that, in brute force approach, we are
generating every possible combination of solution and testing if it is a valid solution.
Whereas, in backtracking, each time you generate a solution, you are testing if it
satisfies all condition, and only then we continue generating subsequent solutions,
else we will backtrack and go on a different path of finding solution.

A famous example to this problem is the N Queens problem. According to the
problem, we are given a N X N sized chessboard. We have to place N queens on
the chessboard such that no queens are under attack from any other queen.

An advantage of this method over brute force is that the numbers of candidates
generated are very less compared to brute force approach. Hence we can isolate
valid solutions quickly.

Lecture (7)

GREEDY ALGORITHM

Suppose that a problem can be solved by a sequence of decisions. The greedy

method has that each decision is locally optimal. These locally optimal solutions

will finally add up to a globally optimal solution.

Only a few optimization problems can be solved by the greedy method.

Shortest paths on a special graph

 Problem: Find a shortest path from v0 to v3.


 The greedy method can solve this problem.




 The shortest path: 1 + 2 + 4 = 7.


1

Algorithm complexities
Lecturer Farah Tawfiq

Shortest paths on a multi-stage graph

 Problem: Find a shortest path from v0 to v3 in the multi-stage graph.


 Greedy method: v0v1,2v2,1v3 = 23




 Optimal: v0v1,1v2,2v3 = 7


The greedy method does not work.

Solution of the above problem

 dmin(i,j): minimum distance between i and j.


3+dmin(v1,1,v3)

d (v ,v)=min 1+dmin(v1,2,v3)
 min 0 3

5+dmin(v1,3,v3)

7+dmin(v1,4,v3)

 This problem can be solved by the dynamic programming method.

2

Minimum spanning trees (MST)

 It may be defined on Euclidean space points or on a graph.




 G = (V, E): weighted connected undirected graph




 Spanning tree : S = (V, T), T E, undirected tree




 Minimum spanning tree(MST) : a spanning tree with the smallest total weight.


An example of MST

 A graph and one of its minimum costs spanning tree


Kruskal’s algorithm for finding MST:

Step 1: Sort all edges into nondecreasing order.

Step 2: Add the next smallest weight edge to the forest if it will not cause a cycle.

Step 3: Stop if n-1 edges. Otherwise, go to Step2.

3

Algorithm complexities
Lecturer Farah Tawfiq

An example for Kruskal’s algorithm:

Prim’s algorithm for finding MST:

Step 1: x V, Let A = {x}, B = V - {x}.

4

Algorithm complexities
Lecturer Farah Tawfiq

Step 2: Select (u, v) E, u A, v B such that (u, v) has the smallest weight between A

and B.

Step 3: Put (u, v) in the tree. A = A {v}, B = B - {v}

Step 4: If B = , stop; otherwise, go to Step 2.

Time complexity : O(n
2
), n = |V|.

An example for Prim’s algorithm

5

What are difference between Prim's algorithm and Kruskal's algorithm for finding the

minimum spanning tree of a graph :

Prim's method starts with one vertex of a graph as your tree, and adds the smallest

edge that grows your tree by one more vertex. Kruskal starts with all of the vertices of

a graph as a forest, and adds the smallest edge that joins two trees in the forest.

Prim's method is better when

You can only concentrate on one tree at a time

You can concentrate on only a few edges at a time

Kruskal's method is better when

You can look at all of the edges at once

You can hold all of the vertices at once

You can hold a forest, not just one tree

Basically, Kruskal's method is more time-saving (you can order the edges by weight

and burn through them fast), while Prim's method is more space-saving (you only

hold one tree, and only look at edges that connect to vertices in your tree).

6

Lecture (8)

DIVIDE AND CONQUER ALGORITHM

The divide and conquer strategy solves a problem by :

1. Breaking into sub problems that are themselves smaller instances of the

same type of problem.

2. Recursively solving these sub problems.

3. Appropriately combining their answers.

Two types of sorting algorithms which are based on this divide and conquer

algorithm:

1. Quick sort: Quick sort also uses few comparisons. Like heap sort it can

sort "in place" by moving data in an array.

2. Merge sort: Merge sort is good for data that's too big to have in memory

at once, because its pattern of storage access is very regular. It also uses

even fewer comparisons than heap sort, and is especially suited for data

stored as linked lists.

Quick sort

Quick sort is one of the fastest and simplest sorting algorithms, which uses

partitioning as its main idea. It works recursively by a divide-and-conquer

strategy.

Example: Pivot about 10.

17 12 6 19 23 8 5 10 - before

6 8 5 10 23 19 12 17 – after

1

Partitioning places all the elements less than the pivot in the left part of the

array, and all elements greater than the pivot in the right part of the array. The

pivot fits in the slot between them.

Example: pivot about 10

|17126192385|10

|126192385|17

|6192385|1217

6|192385|1217

6|2385|191217

6|85|23191217

68|5|23191217

685||23191217

6851023191217

Note that the pivot element ends up in the correct place in the total order.

Quick sort algorithm:

Algorithm quicksort(q)

var list less, pivotList, greater

if length(q) ≤ 1

return q

else

select a pivot value from q

for each x in q except the pivot element

if x < pivot then add x to less

if x ≥ pivot then add x to greater

add pivot to pivotList

return concatenate(quicksort(less), pivotList, quicksort(greater))

2

Time and Space Complexity of Quick Sort

Time complexity =O(n log n).

Space complexity = O(n)

When to use Quick sort :

- When average expected time is O(n log n)

- When space is concerned

- When you need stable sort

Merge Sort

Merge Sort is a O(nlogn) sorting algorithm. It is easy to implement merge

sort such that it is stable meaning it preserves the input order of equal

elements in the sorted output. It is a comparison sort.

3

Merge sort algorithm:

Algorithm: mergesort (A, left, right)

Input: An array A of numbers , the bounds left

and Right for the elements to be sorted Output: A

[left…right] is sorted

Process:

If (left<right) { /*we have at least two elements to sort*/

Mid= [(left +right)/2]

Mergesort (A, left, mid)

mergesort(A,mid+1,right)

Merge (A, left, mid,

right) }

/*now A [left….mid] is sorted*/

/*now A [mid+1….right] is sorted */

/* merge A [left ...mid] with A [mid+1...right]*/

4

Merging:

Merge(array A, int left, int mid, int right)

{

array B[left..right]

i = k = left

j = mid+1

while (i <= mid and j <= right) {

if (A[i] <= A[j]) B[k++] = A[i++]

else B[k++] = A[j++]

}

while (i <= mid) B[k++] = A[i++]

while (j <= right) B[k++] = A[j++]

for i = left to right A[i] = B[i] }

// initialize pointers

// while both subarrays are nonempty

// copy from left subarray

// copy from right subarray

// copy any leftover to B

// copy B back to A

Time and Space Complexity of Merge Sort

Time complexity =O(n log n).

Space complexity = O(n)

When to use Merge sort :

- When average expected time is O(n log n)

- When you need stable sort

When to avoid Merge sort :

- When space is concerned

5

University of Technology

Computer science Department

Algorithms Complexity

Lecturer : Eman shakir

Class: Third

Branch :A.I

1
st

 course 2024
Ninth lecture

Dynamic Programming

What is dynamic Programming ?

Definition: Dynamic programming (DP) is an algorithmic technique for
Solving an optimization problem by breaking it down into simpler
Subproblems and utilizing the fact that the optimal solution to the overall
Problem depends upon the optimal solution to its subproblem

Simple example

1+1+1+1+1+1+1 =7

1+1+1+1+1+1+1+2=9

7

Dynamic Programming

• The key idea behind dynamic programming is quite simple. In
general, to solve a given problem, we need to solve different parts of
the problem (subproblems), then combine the solutions of the
subproblems to reach an overall solution. Often, many of these
subproblems are really the same. The dynamic programming approach
seeks to solve each subproblem only once, thus reducing the number
of computations: once the solution to a given subproblem has been
computed, it is stored, the next time the same solution is needed, it is
simply looked up. This approach is especially useful when the number
of repeating subproblems grows exponentially as a function of the
size of the input.

http://en.wikipedia.org/wiki/Exponential_growth
http://en.wikipedia.org/wiki/Exponential_growth
http://en.wikipedia.org/wiki/Exponential_growth
http://en.wikipedia.org/wiki/Exponential_growth

Dynamic Programming

• There are two key attributes that a problem must have in order for
dynamic programming to be applicable: optimal substructure and
overlapping sub problems. If a problem can be solved by combining
optimal solutions to non-overlapping sub problems, the strategy is
called "divide and conquer". This is why merge sort and quick sort
are not classified as dynamic programming problems.

• Optimal substructure means that the solution to a given
optimization problem can be obtained by the combination of
optimal solutions to its sub problems. Consequently, the first step
towards devising a dynamic programming solution is to check
whether the problem exhibits such optimal substructure. Such
optimal substructures are usually described by means of recursion

http://en.wikipedia.org/wiki/Optimal_substructure
http://en.wikipedia.org/wiki/Overlapping_subproblem
http://en.wikipedia.org/wiki/Divide_and_conquer_algorithm
http://en.wikipedia.org/wiki/Mergesort
http://en.wikipedia.org/wiki/Quicksort
http://en.wikipedia.org/wiki/Quicksort

Dynamic Programming

• Ex: fibonaccia
• Fib(n)=Fib(n-1)+Fib(n-2)

• Overlapping subproblems means that the space of subproblems

must be small (subproblems are smaller version of the original
problem), that is, any recursive algorithm solving the problem
should solve the same subproblems over and over, rather than
generating new subproblems.

Dynamic Programming

Dynamic Programming

Dynamic Programming

• Dynamic Programming is the optimization of Divide and conquer

• In DP we divide the main problem into smaller Problem and then

solving this problems as in divide and Conquer but the difference if
the smaller problems come again and again we use the solution
instead of solving them multiple times and this method increase the
efficiency of the algorithm .

Dynamic Programming

Top down with memorization.

Definition. Solving the bigger Problem by recursively finding the solution

• to smaller Subproblems. Whenever we solve a subproblem we Cache it's
result So that we don't end up solving it repeatedly if it's called multiple
times. This technique of storing the results of already solved
Subproblems is called Memoization The main idea we start from the top
which is the main problem then Continue to the down by dividing the
main problem into subproblem and while solving these subproblem we
store the results so that if we face the same problem we are not solving it
multiple times just use the result that we got before

Dynamic Programming

Ex :Fibonacci 0,1 1,2,3,5,8,13, 21, 34,55 , ……..

Fib(N) =Fib (N-1) + Fib(N-2) , in case of Divide & Conquer we use the following algorithm

fib (N):

If n <1 return error message

If n=1 return 0

If n = 2 return 1

Else

Return Fib (N-1) + Fib (N-2)

We have 2 recursive Calls

Time Complexity - O(c^n) exponential

Space Complexity O(n)

Dynamic Programming

Dynamic Programming

Dynamic Programming

• Fibonaccia in dynamic programming
method fib (N):
If n <1 return error message

If n=1 return 0
If n = 2 return 1

If not n in memo :

memo[n]= Fib (N-1,memo) + Fib(N-2,memo)

return memo[n]

Time complexity =O(n)

Space complexity = O(n)

So the previous tree is reduced to the following tree

Dynamic Programming

Dynamic Programming

• Filling memo in top down approach

F1 F2 F3 F4 F5 F6

0 1 F4+f5

F1 F2 F3 F4 F5 F6

0 1 F3+F4 F4+F5

F1 F2 F3 F4 F5 F6

0 1 F2+F3 F3+F4 F4+f5

F1 F2 F3 F4 F5 F6

0 1 F1+F2 F2+F3 F3+F4 F4+F5

F1 F2 F3 F4 F5 F6

0 1 1 F2+F3 F3+F4 F4+f5

F1 F2 F3 F4 F5 F6

0 1 1 2 F3+F4 F4+F5

F1 F2 F3 F4 F5 F6

0 1 1 2 3 F4+f5

F1 F2 F3 F4 F5 F6

0 1 1 2 3 5

Dynamic Programming

Bottom up with Tabulation:

Tabulation is the opposite of the top down approach and avoids
recursion. In this approach. we solve the problem "bottom-ups (ie. by
solving all the related subproblems first). This is done by filling up a
table Based on the results in the table, the solution to the top /original

Dynamic Programming

• Filling memo in top bottom-up approach (solving all related
sub-problems first)

F1 F2 F3 F4 F5 F6

0 1 F1+F2

F1 F2 F3 F4 F5 F6

0 1 1

F1 F2 F3 F4 F5 F6

0 1 1 F2+F3

F1 F2 F3 F4 F5 F6

0 1 1 2

F1 F2 F3 F4 F5 F6

0 1 1 2 F3+F4

F1 F2 F3 F4 F5 F6

0 1 1 2 3

F1 F2 F3 F4 F5 F6

0 1 1 2 3 F4+f5

F1 F2 F3 F4 F5 F6

0 1 1 2 3 5

Dynamic Programming

• Top down Vs. bottom up

 Top down Bottom up

Easiness Easy to come up with Difficult to come up with

 solution as it is extensive solution

 of divide and conquer

Runtime Slow Fast

Space efficiency Unnecessary use of stack Stack is not used

 place

When to use Need a quick solution Need an efficient solution

Longest common subsequence(LCS)

• A simple problem that illustrate the underlying principle of dynamic
programming is the following problem given two strings A and B of
lengths N and M find the longest common substring for both of them
them for the following example find the LCS between A=“AABCAS”

And B = “CABSSBA”

Longest common subsequence(LCS)

Longest common subsequence(LCS)

Longest common subsequence(LCS)

Longest common subsequence(LCS)

Longest common subsequence(LCS)

Longest common subsequence(LCS)

Longest common subsequence(LCS)

Longest common subsequence(LCS)

Longest common subsequence(LCS)

University of Technology

Computer science Department

Algorithms Complexity

Lecturer : Eman shakir

Class: Third

Branch :A.I

1
st

 course 2024

Tenth lecture

Network Flow Problem

1. Introduction

The network flow problem is an example of a beautiful theoretical subject that has

many important applications. It also has generated algorithmic questions that have

been in a state of extremely rapid development in the past 20 years. Altogether, the

fastest algorithms that are now known for the problem are much faster, and some

are much simpler, than the ones that were in use a short time ago, but it is still

unclear how close to the ‘ultimate’ algorithm we are.

Definition. A network is an edge-capacitated directed graph, with two

distinguished vertices called the source and the sink.

capacity :in a network there is a positive real number associated with each

directed edge e of the digraph .

Figure (1) Network

Definition. A flow in a network X is a function f that assigns to each edge e of the

network a real number

f(e), in such a way that

(1) For each edge e we have 0 ≤ f(e) ≤ cap(e) and

(2) For each vertex v other than the source and the sink, it is true that

Figure (2)

2. Algorithms for the network flow problem

The first algorithm for the network flow problem was given by Ford and

Fulkerson. They used that algorithm not only to solve instances of the problem,

but also to prove theorems about network flow.

1. The algorithm of Ford and Fulkerson

The basic idea of the Ford-Fulkerson algorithm for the network flow problem is this:

start with some flow function (initially this might consist of zero flow on every

edge). Then look for a flow augmenting path in the network. A flow augmenting

path is a path from the source to the sink along which we can push some additional

flow.

In Fig. (3) below we show a flow augmenting path for the network of Fig. (4). The

capacities of the edges are shown on each edge, and the values of the flow function

are shown in the boxes on the edges.

Figure (3)

Figure(4)

An edge can get elected to a flow augmenting path for two possible reasons. Either

(a) the direction of the edge is coherent with the direction of the path from source to

sink and the present value of the flow function on the edge is below the capacity of

that edge, or (b) the direction of the edge is opposed to that of the path from source to

sink and the present value of the flow function on the edge is strictly positive.

Indeed, on all edges of a flow augmenting path that are coherently oriented with the

path we can increase the flow along the edge, and on all edges that are incoherently

oriented with the path we can decrease the flow on the edge, and in either case we

will have increased the value of the flow (think about that one until it makes

sense). It is, of course, necessary to maintain the conservation of flow, i.e., to

respect Kirchhoff’s laws. To do this we will augment the flow on every edge of an

augmenting path by the same amount. If the conservation conditions were satisfied

before the augmentation then they will still be satisfied after such an augmentation.

It may be helpful to remark that an edge is coherently or incoherently oriented only

with respect to a given path from source to sink. That is, the coherence, or lack of

it, is not only a property of the directed edge, but depends on how the edge sits

inside a chosen path.

Thus, in Fig. (3) the first edge is directed towards the source, i.e., incoherently with

the path. Hence if we can decrease the flow in that edge we will have increased the

value of the flow function, namely the net flow out of the source. That particular

edge can indeed have its flow decreased, by at most 8 units. The next edge carries

10 units of flow towards the source. Therefore if we decrease the flow on that

edge, by up to 10 units, we will also have increased the value of the flow function.

Finally, the edge into the sink carries 12 units of flow and is oriented towards the

sink. Hence if we increase the flow in this edge, by at most 3 units since its

capacity is 15, we will have increased the value of the flow in the network.

Since every edge in the path that is shown in Fig. (3) can have its flow altered in

one way or the

other so as to increase the flow in the network, the path is indeed a flow

augmenting path. The most that we might accomplish with this path would be to

push 3 more units of flow through it from source to sink.

We couldn’t push more than 3 units through because one of the edges (the edge

into the sink) will tolerate an augmentation of only 3 flow units before reaching its

capacity.

To augment the flow by 3 units we would decrease the flow by 3 units on each of

the first two edges and increase it by 3 units on the last edge. The resulting flow in

this path is shown in Fig. (4). The flow in the full network, after this augmentation,

is shown in Fig. (5). Note carefully that if these augmentations are made then flow

conservation at each vertex of the network will still hold.

Figure (5)

After augmenting the flow by 3 units as we have just described, the resulting flow will

be the one that is shown in Fig. (5). The value of the flow in Fig. (2) was 32 units.

After the augmentation, the flow function in Fig. (5) has a value of 35 units. We have

just described the main idea of the Ford-Fulkerson algorithm. It first finds a flow

augmenting path. Then it augments the flow along that path as much as it can. Then it

finds another flow augmenting path, etc. The algorithm terminates when no flow

augmenting paths exist. We will prove that when that happens, the flow will be at the

maximum possible value, i.e., we will have found the solution of the network flow

problem. We will now describe the steps of the algorithm in more detail.

Definition. Let f be a flow function in a network X. We say that an edge e of X is

usable from v to w if either e is directed from v to w and the flow in e is less than

the capacity of the edge, or e is directed from w to v and the flow in e is > 0.

