

University of Technology

 ةيجولونكتلا ةعماجلا

Computer Science Department
 بوساحلا مولع مسق

Algorithms Analysis and Design

 تايمزراوخلا ميمصتو ليلحت

Lect. Iman Shakir
 ركاش ناميإ .م

cs.uotechnology.edu.iq

1. Concepts and Properties of Algorithms

The concept of an algorithm is fundamental to computer science. Algorithms

exist for many common problems, and designing efficient algorithms plays a

crucial role in developing large-scale computer systems. Therefore, before we

proceed further we need to discuss this concept more fully. We begin with a

definition.

1.2 What Is an Algorithm?

Definition: An algorithm is a finite set of instructions that, if followed,

accomplishes a particular task.

The reference to “instructions” in the definition implies that there is

something or someone capable of understanding and following the

instructions given.

In addition, all algorithms must satisfy the following criteria:

1. Input. There are zero or more quantities that are externally

supplied.

2. Output. At least one quantity is produced.

3. Definiteness. Each instruction is clear and unambiguous.

4. Finiteness. If we trace out the instructions of an algorithm, then

for all cases, the algorithm terminates after a finite number of

steps.

5. Effectiveness. Every instruction must be basic enough to be

carried out, in principle, by a person using only pencil and paper.

It is not enough that each operation be definite as in (3); it also

must be feasible.

Algorithm definition can be illustrated by a simple diagram (Figure

1).

For example, one might need to sort a sequence of numbers into increasing order.

This problem arises frequently in practice and provides fertile ground for

introducing many standard design techniques and analysis tools. Here is how we

formally define the sorting problem:

• Input: A sequence of n numbers (a1, a2, ..., an).

• Output: A permutation (reordering) (a1’, a2’, ..., an’) of the input sequence

such that a1’≤a2’≤…≤an’.

For example, given the input sequence (31, 41, 59, 26, 41, 58), a sorting

algorithm returns as output the sequence (26, 31, 41, 41, 58, 59). Such an input

sequence is called an instance of the sorting problem. In general, an instance of

a problem consists of the input (satisfying whatever constraints are imposed in

the problem statement) needed to compute a solution to the problem.

2. Fundamentals of Algorithmic Problem Solving

We can consider algorithms to be procedural solutions to problems. These

solutions are not answers but specific instructions for getting answers. It is this

emphasis on precisely defined constructive procedures that makes computer

science distinct from other disciplines.

2.1 Understanding the Problem
From a practical perspective, the first thing you need to do before designing

an algorithm is to understand completely the problem given. Read the problem’s

description carefully and ask questions if you have any doubts about the problem,

do a few small examples by hand, think about special cases, and ask questions

again if needed.

An input to an algorithm specifies an instance of the problem the algorithm

solves. It is very important to specify exactly the set of instances the algorithm

needs to handle.

2.2 Algorithm Design

The important aspects of algorithm design include creating an efficient algorithm

to solve a problem in an efficient way using minimum time and space. To solve

a problem, different approaches can be followed. Some of them can be efficient

with respect to time consumption, whereas other approaches may be memory

efficient. However, one has to keep in mind that both time consumption and

memory usage cannot be optimized simultaneously. If we require an algorithm to

run in lesser time, we have to invest in more memory and if we require an

algorithm to run with lesser memory, we need to have more time.

2.2.1 Methods of Specifying an Algorithm
Pseudocode is a mixture of a natural language and programming language like

constructs. Pseudocode is usually more precise than natural language, and its

usage often yields more succinct algorithm descriptions.

In the earlier days of computing, the dominant vehicle for specifying algorithms

was a flowchart, a method of expressing an algorithm by a collection of

connected geometric shapes containing descriptions of the algorithm’s steps.

2.2.2 Difference between Algorithm and Pseudocode

An algorithm is a formal definition with some specific characteristics

that describes a process, which could be executed to perform a specific

task. Generally, the word "algorithm" can be used to describe any high

level task in computer science. On the other hand, pseudocode is an

informal and human readable description of an algorithm leaving many

granular details of it. Writing a pseudocode has no restriction of styles

and its only objective is to describe the high level steps of algorithm in

a much realistic manner in natural language.

For example, following is an algorithm for Insertion Sort.

2.3 Proving an Algorithm’s Correctness

Once an algorithm has been specified, you have to prove its correctness. That is,

you have to prove that the algorithm yields a required result for every legitimate

input in a finite amount of time.

Whenever we have an algorithm, there are three questions we always ask about

it:

1. Is it correct?

Will the algorithm stop? – Halting Problem.

Given input and output specifications, will the algorithm function correctly

with respect to input and output specifications?

2. How much time does it take, as a function of n?

T(n) ∞ �(�). Worse case, best case and average case.

Upper bound and lower bound?

3. And can we do better?

In term of time efficiency.

2.4 Analysis of an Algorithm

We usually want our algorithms to possess several qualities. After correctness,

by far the most important is efficiency. In fact, there are two kinds of algorithm

efficiency: time efficiency, indicating how fast the algorithm runs, and space

efficiency, indicating how much extra memory it uses.

Analysis of algorithm is the process of analyzing the problem-solving capability

of the algorithm in terms of the time and size required (the size of memory for

storage while implementation). However, the main concern of analysis of

algorithms is the required time

or performance. Generally, we perform the following types of analysis:

 Worst-case: The maximum number of steps taken on any instance of size

n.

 Best-case: The minimum number of steps taken on any instance of size n.

 Average case: An average number of steps taken on any instance of size

n.

2.5 Coding an Algorithm

Most algorithms are destined to be ultimately implemented as computer

programs. Programming an algorithm presents both a peril and an opportunity.

The peril lies in the possibility of making the transition from an algorithm to a

program either incorrectly or very inefficiently. Some influential computer

scientists strongly believe that unless the correctness of a computer program is

proven with full mathematical rigor, the program cannot be considered correct.

3. Algorithm Complexity

3.1 Running Time Functions

Most algorithms have a primary parameter N, usually the number of

data items to be processed, which affects the running time most

significantly. The parameter N might be the degree of a polynomial, the

size of a file to be sorted or searched, the number of nodes in a graph, etc.

proportional to one of the following functions:

1. (1) Most instructions of most programs are executed once or at most

only a few times. If all the instructions of a program have this

property, we say that its running time is constant. This is obviously

the situation to strive for algorithm design.

2. (log N) When the running time of a program is logarithmic, the

program gets slightly slower as N grows. This running time

commonly occurs in programs which solve a big problem by

transforming it into a smaller problem by cutting the size by some

constant fraction. For our range of interest, the running time can be

considered to be less than a large constant. The base of the

logarithm changes the constant, but not by much: when N is a

thousand, log N is 3 if the base is 10, 10 if the base is 2; when N is

a million, 1og N is twice as great. Whenever N doubles, log N

increases by a constant, but log N doesn’t double until N increases

to N2.

3. (N) When the running time of a program is linear, it generally is the

case that a small amount of processing is done on each input

element. When N is a million, then so is the running time. Whenever

N doubles, then so does the running time. This is the optimal

situation for an algorithm that must process N inputs (or produce N

outputs).

4. (N log N) This running time arises in algorithms which solve a

problem by breaking it up into smaller sub problems, solving them

independently, and then combining the solutions. For lack of a

better adjective (linearithmic), we’ll say that the running time of

such an algorithm is “N log N.” When N is a million, N log N is

perhaps twenty million. When N doubles, the running times more

than doubles (but not much more).

5. (N2) When the running time of an algorithm is quadratic, it is

practical for use only on relatively small problems. Quadratic

running times typically arise in algorithms which process all pairs
of data items (perhaps in a double nested loop). When N is a
thousand, the running time is a million. Whenever N doubles, the
running time increases fourfold.

6. (N3) Similarly, an algorithm which processes triples of data items

(perhaps in a triple-nested loop) has a cubic running time and is

practical for use only on small problems. When N is a hundred, the
running time is a million. Whenever N doubles, the running time
increases eightfold.

7. (2N) Few algorithms with exponential running time are likely to be

appropriate for practical use, though such algorithms arise naturally

as “brute-force” solutions to problems. When N is twenty, the
running time is a million. Whenever N doubles, the running time
squares.

Example:
.8

3.2 Space complexity

The (space) complexity of a program (for a given input) is the number of

elementary objects that this program needs to store during its execution. This

number is computed with respect to the size n of the input data

Space complexity is measured by using polynomial amounts of memory, with

an infinite amount of time.

The difference between space complexity and time complexity is that space

can be reused. Space complexity is not affected by determinism or non

determinism. Amount of computer memory required during the program

execution, as a function of the input size

How to Determine Complexities
In general, how can you determine the running time of a piece of code?

The answer is that it depends on what kinds of statements are used.

1. Sequence of statements

statement 1;

statement 2;

...

statement k;

(Note: this is code that really is exactly k statements; this is not an

unrolled loop like the N calls to add shown above.) The total time is

found by adding the times for all statements:

Total time = time (statement 1) + time (statement 2) + ... + time

(statement k)

If each statement is "simple" (only involves basic operations) then

the time for each statement is constant and the total time is also

constant: O(1). In the following examples, assume the statements are

simple unless noted otherwise.

2- if-then-else statements

if (condition) {

Sequence of statements 1

}

else {

sequence of statements 2

}

Here, either sequence 1 will execute, or sequence 2 will execute.

Therefore, the worst-case time is the slowest of the two possibilities:

max (time (sequence 1), time (sequence 2)). For example, if

sequence 1 is O(N) and sequence 2 is O(1) the worst-case time for

the whole if-then-else statement would be O(N).

3- for loops

for (i = 0; i < N; i++) {

sequence of statements

}

The loop executes N times, so the sequence of statements also

executes N times. Since we assume the statements are O(1), the total

time for the for loop is N * O(1), which is O(N) overall.

4- Nested loops

First we'll consider loops where the number of iterations of the inner

loop is independent of the value of the outer loop's index. For

example:

for (i = 0; i < N; i++) {

for (j = 0; j < M; j++) {

sequence of statements

}

}

The outer loop executes N times. Every time the outer loop executes,

the inner loop executes M times. As a result, the statements in the

inner loop execute a total of N * M times. Thus, the complexity is

O(N * M). In a common special case where the stopping condition

of the inner loop is j < N instead of j < M (i.e., the inner loop also

executes N times), the total complexity for the two loops is O(N2).

Now let's consider nested loops where the number of iterations of

the inner loop depends on the value of the outer loop's index. For

example:

for (i = 0; i < N; i++) {

for (j = i+1; j < N; j++) {

sequence of statements

}

}

4. Easy and Hard Problems
We argue that the class of problems that can be solved in polynomial time

(denoted by P) corresponds well with what we can feasibly compute. But

sometimes it is difficult to tell when a particular problem is in P or not.

Theoreticians spend a good deal of time trying to determine whether

particular problems are in P. To demonstrate how difficult it can be. To make this

determination, we will survey a number of problems, some of which are known

to be in P, and some of which we think are (probably) not in P. The difference

between the two types of problem can be surprisingly small. Throughout the

following, an ''easy'' problem is one that is solvable in polynomial time; while a

''hard'' problem is one that we think cannot be solved in polynomial time. When

we say that a problem is hard, it means that some instances of the problem are

hard. It does not mean that all problem instances are hard.

4.1 Color Map

• 2 Color Map (Easy)

– INPUT: A graph G=(V, E).

– DECIDE: Can this map

be Colored with 2 colors so

that no two adjacent countries

have the same color?

• 3 Color Map 3 (Hard)

– INPUT: A graph G=(V, E).

– DECIDE: Can this map be colored with 3 colors so that no two

adjacent countries have the same color?

• 4 Color Map 4- (Easy)

– INPUT: A graph G=(V, E).

– DECIDE: Can this map be colored with 4 colors so that no two

adjacent countries have the same color?

Some Facts

• Map 2-colorability

– To solve this problem, we simply color the first country arbitrarily.

This forces the colors of neighboring countries to be the other

color, which in turn forces the color of the countries neighboring

those countries, and so on. If we reach a country which borders two

countries of different color, we will know that the map cannot be

two-colored; otherwise, we will produce a two coloring. So this

problem is easily solvable in polynomial time.

• Map 3-colorability

– This problem seems very similar to the problem above, however, it

turns out to be much harder. No one knows how this problem can

be solved in polynomial time. (In fact this problem is NP-

complete.)

• Map 4-colorability.

– Here we have an easy problem again. By a famous theorem, any

map can be four-colored. It turns out that finding such a coloring is

not that difficult either.

4.2 Hard problems

Our usual measure of efficiency is speed, i.e., how long an algorithm takes

to produce its result. There are some problems, however, for which no efficient

solution is known. Studies an interesting subset of these problems, which are

known as NP-complete.

Why are NP-complete problems interesting? First, although no efficient

algorithm for an NP complete problem has ever been found, nobody has ever

proven that an efficient algorithm for one cannot exist. In other words, it is

unknown whether or not efficient algorithms exist for NP-complete problems.

Second, the set of NP-complete problems has the remarkable property that if an

efficient algorithm exists for any one of them, then efficient algorithms exists for

all of them. This relationship among the NP-complete problems makes the lack

of efficient solutions all the more tantalizing. Third, several NP-complete

problems are similar, but not identical, to problems for which we do know of

efficient algorithms. A small change to the problem statement can cause a big

change to the efficiency of the best known algorithm.

5. Travelling salesman problem

The travelling salesman problem (also called the travelling salesperson problem

or TSP) asks the following question: "Given a list of cities and the distances

between each pair of cities, what is the shortest possible route that visits each city

and returns to the origin city?" It is an NP-hard problem in combinatorial

optimization, important in theoretical computer science and operations research.

TSP can be modelled as an undirected weighted graph, such that cities are the

graph's vertices, paths are the graph's edges, and a path's distance is the edge's

weight. It is a minimization problem starting and finishing at a

specified vertex after having visited each other vertex exactly once. Often, the

model is a complete graph (i.e. each pair of vertices is connected by an edge). If

no path exists between two cities, adding an arbitrarily long edge will complete

the graph without affecting the optimal tour.

Asymmetric and symmetric

In the symmetric TSP, the distance between two cities is the same in each

opposite direction, forming an undirected graph. This symmetry halves the

number of possible solutions. In the asymmetric TSP, paths may not exist in both

directions or the distances might be different, forming a directed graph. Traffic

collisions, one-way streets, and airfares for cities with different departure and

arrival fees are examples of how this symmetry could break down.

https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)
https://en.wikipedia.org/wiki/Vertex_(graph_theory)
https://en.wikipedia.org/wiki/Glossary_of_graph_theory_terms
https://en.wikipedia.org/wiki/Vertex_(graph_theory)
https://en.wikipedia.org/wiki/Vertex_(graph_theory)
https://en.wikipedia.org/wiki/Complete_graph
https://en.wikipedia.org/wiki/Undirected_graph
https://en.wikipedia.org/wiki/Directed_graph
https://en.wikipedia.org/wiki/Traffic_collision
https://en.wikipedia.org/wiki/Traffic_collision
https://en.wikipedia.org/wiki/One-way_traffic

6. Strategies in Algorithm Design
One very important aspect of problem-solving is devising good strategies. Indeed,

there are many strategies for algorithm design.

1. Iteration
2. Recursion

3. 4- Color mapping

4. Traveling Salesman

5. Shortest Path

6. Brute force algorithm

7. Greedy algorithm

8. Divide and conquer

9. Dynamic programming

10. Network flow

11. Branch and bound

12. Heuristics

Algorithm: An algorithm is a sequence of computational steps that transform the

input to an output. It is a tool for solving a well-specified computational problem.

Strategy: A strategy is an approach (or a series of approaches) devised to solve a

computational problem.

Since both are intended to solve computational problems, how are they related?

Simply put:

An algorithm is a strategy that always guarantees the correct answer.

How are they different?

1. A strategy might yield incorrect results, but a correct algorithm will always

produce correct results.

2. Strategies are invented, algorithms are more or less tested and trusted

standards

3. Strategies are flexible, but algorithms are rigid i.e. they follow only one set

of procedures

6.1 Iteration

Iteration involves repeating a block of code until a condition is false. During

iteration, the program makes multiple passes through a block of code.

Iteration can be achieved using loops or recursion (more on this later). The basic

loop constructs are:

• The for loop

• The for-each loop

• The while loop

• The do-while loop

6.2 Recursion
Recursion is repetition achieved through method calls. A recursive method makes

repeated calls to itself before returning a result. A result is returned if and only if

a base case exists.

This base case ensures that the solution converges otherwise an infinite recursion

occurs which in turn leads to a Stack Overflow.

Recursion is intuitive because each new method call works on clones of the

original problem leading to a final result (if it converges).

Example:

Find the factorial of any positive integer n.

Analysis

Mathematically, the factorial of a positive number, n, is the product of all the

consecutive numbers from 1 to n. Thus, the formula is:

For example, if n = 3, 4, and 5, then the result in Figure bellow is expected.

Using Iteration

This solution can be achieved in a variety of ways with iteration. pseudocode

makes use while loop and the reduce function. The loop is repeated n times.

Thus, the time complexity for the factorial function is O(n).

Using Recursion

To better understand how recursion would work for this problem, insight is

needed. Notice that factorial function in above is simply calling itself with smaller

values of n. Thus, when the result of smaller subproblems is known, we can easily

compute the result of other higher problems. This is highlighted in algorithm

below. Again, since at most n method calls are made during recursion, the time

complexity is O(n).

vertex Shorter
distance
from C

Previous
vertex

A ∞

B ∞

C 0

D ∞

E ∞

7. Shortest Path (Dijkstra’s Algorithm):

Dijkstra's Algorithm allows you to calculate the shortest path between one node (you pick which one)

and every other node in the graph. You'll find a description of the algorithm at the end of this page, but,

let's study the algorithm with an explained example! Let's calculate the shortest path between node C and

the other nodes in our graph:

During the algorithm execution, we'll mark every node with its minimum distance to node C (our selected

node). For node C, this distance is 0. For the rest of nodes, as we still don't know that minimum distance,

it starts being infinity (∞):

Visited =[] Unvisited=[ABCDE]

We'll also have a current node. Initially, we set it to C (our selected node). In the image, we mark the

current node with a red dot. Now, we check the neighbors of our current node (A, B and D) in no specific

order. Let's begin with B. We add the minimum distance of the current node (in this case, 0) with the

weight of the edge that connects our current node with B (in this case, 7), and we obtain 0 + 7 = 7. We

vertex Shorter
distance
from C

Previous
vertex

A 1 C
B 7 C
C 0

D 2 C
E ∞

vertex Shorter
distance
from C

Previous
vertex

A 1 C
B 7 C
C 0

D 2 C
E ∞

compare that value with the minimum distance of B (infinity); the lowest value is the one that remains as

the minimum distance of B (in this case, 7 is less than infinity). Repeat the same procedure for A, D:

Visited =[] Unvisited=[ABDE]

We have checked all the neighbors of C. Because of that, we mark it as visited. Let's represent visited

nodes with a green check mark:

Visited =[C] Unvisited=[ABDE]

We now need to pick a new current node. That node must be the unvisited node with the smallest

minimum distance (so, the node with the smallest number and no check mark). That's A. Let's mark it

with the red dot:

And now we repeat the algorithm. We check the neighbors of our current node, ignoring the visited nodes.

This means we only check B.

For B, we add 1 (the minimum distance of A, our current node) with 3 (the weight of the edge connecting

A and B) to obtain 4. We compare that 4 with the minimum distance of B (7) and leave the smallest value:

4.

vertex Shorter
distance
from C

Previous
vertex

A 1 C
B 4 A
C 0

D 2 C
E ∞

Visited =[C] Unvisited=[ABDE]

Afterwards, we mark A as visited and pick a new current node: D, which is the non-visited node with the
smallest current distance. We repeat the algorithm again. This time, we check B and E.

Visited =[CA] Unvisited=[BDE]

For B, we obtain 2 + 5 = 7. We compare that value with B's minimum distance (4) and leave the smallest

value (4). For E, we obtain 2 + 7 = 9, compare it with the minimum distance of E (infinity) and leave the

smallest one.)9(We mark D as visited and set our current node to B.

vertex Shorter
distance
from C

Previous
vertex

A 1 C
B 4 A
C 0

D 2 C
E ∞

vertex Shorter
distance
from C

Previous
vertex

A 1 C
B 4 A
C 0
D 2 C
E 5 B

vertex Shorter
distance
from C

Previous
vertex

A 1 C
B 4 A
C 0
D 2 C
E 5 B

Visited =[CAD] Unvisited=[BE]

Almost there. We only need to check E. 4 + 1 = 5, which is less than E's minimum distance (9), so we

leave the 5. Then, we mark B as visited and set E as the current node.

Visited =[CADB] Unvisited=[E]

E doesn't have any non-visited neighbors, so we don't need to check anything. We mark it as visited.

Visited =[CADBE] Unvisited=[]

vertex Shorter
distance
from C

Previous
vertex

A 1 C
B 4 A
C 0
D 2 C
E 9 D

8- Brute Force Algorithm
The brute force solution is simply to calculate the total distance for every possible

route and then select the shortest one. This is not particularly efficient because it

is possible to eliminate many possible routes through clever algorithms.

The time complexity of brute force is O(mn), which is sometimes written as

O(n*m) . So, if we were to search for a string of "n" characters in a string of "m"

characters using brute force, it would take us n * m tries.

Advantages: Guaranteed to find the most efficient circuit.

Disadvantages: Can be a lot of work to carry out the algorithm.

The Brute Force Algorithm finds the weight of every Hamilton Circuit and

chooses the cheapest one.

Example:

Solution:

1. Find all possible circuit

2. Find the cost for each circuit

3- Choose the lowest cost circuit.

9- Greedy Algorithm

Suppose that a problem can be solved by a sequence of decisions. The greedy

method has that each decision is locally optimal. These locally optimal

solutions will finally add up to a globally optimal solution. Only a few

optimization problems can be solved by the greedy method.

 Shortest paths on a special graph

Problem: Find a shortest path from v0 to v3.

The greedy method can solve this problem.

The shortest path: 1 + 2 + 4 = 7.

Shortest paths on a multi-stage graph

Problem: Find a shortest path from v0 to v3 in the multi-stage graph.

Greedy method: v0v1,2v2,1v3 = 23

Optimal: v0v1,1v2,2v3 = 7

The greedy method does not work.

10- Divide and Conquer
The divide and conquer strategy solves a problem by:

1. Breaking into sub problems that are themselves smaller instances of

the same type of problem.

2. Recursively solving these sub problems.

3. Appropriately combining their answers.

Two types of sorting algorithms which are based on this divide and

conquer algorithm:

1. Quick sort: Quick sort also uses few comparisons. Like heap sort it

can sort "in place" by moving data in an array.

2. Merge sort: Merge sort is good for data that's too big to have in memory

at once, because its pattern of storage access is very regular. It also uses

even fewer comparisons than heap sort, and is especially suited for data

stored as linked lists.

Quick sort
Pivot element can be any element from the array, it can be the first element, the

last element or any random element. In this example, we will take the rightmost

element or the last element as pivot.

Quick Sort Algorithm: Steps on how it works:

1. Find a “pivot” item in the array. This item is the basis for comparison for

a single round.
2. Start a pointer (the left pointer) at the first item in the array.
3. Start a pointer (the right pointer) at the last item in the array.

4. While the value at the left pointer in the array is less than the pivot value,

move the left pointer to the right (add 1). Continue until the value at the

left pointer is greater than or equal to the pivot value.
5. While the value at the right pointer in the array is greater than the pivot

value, move the right pointer to the left (subtract 1). Continue until the

value at the right pointer is less than or equal to the pivot value.
6. If the left pointer is greater than or equal to the right pointer, then swap

the values at these locations in the array.
7. Move the left pointer to the right by one and the right pointer to the left

by one.
8. If the left pointer and right pointer don’t meet, go to step 1.

Complexity of Quicksort

Best case:

Set up a recurrence relation for T(n), the time needed to sort a list of size n.

Because a single quicksort call involves O(n) work plus two recursive calls on

lists of size n/2 in the best case, the relation would be:

T(n) = O(n) + 2T(n/2)

The master theorem tells us that T(n) = O(n log n).

Average case:

To sort an array of n distinct elements, quicksort takes O(n log n) time in
expectation, averaged over all n! permutations of n elements with equal
probability. We list here three common proofs to this claim providing different
insights into quicksort's workings.

Worst case:

In the worst case, however, the two sublists have size 1 and n-1, and the call

tree becomes a linear chain of n nested calls. The recurrence relation is:

T(n) = O(n) + T(1) + T(n - 1) = O(n) + T(n - 1)

This is the same relation as for insertion sort and selection sort, and it solves

to T(n) = O(n2).

Quick sort algorithm:

Algorithm quicksort(q)

var list less, pivotList, greater

if length(q) ≤ 1

return q

else

select a pivot value from q

for each x in q except the pivot element

if x < pivot then add x to less

if x ≥ pivot then add x to greater

add pivot to pivotList

return concatenate(quicksort(less), pivotList, quicksort(greater))

11- Dynamic programming
The key idea behind dynamic programming is quite simple. In general, to

solve a given problem, we need to solve different parts of the problem

(subproblems), then combine the solutions of the subproblems to reach an

overall solution. Often, many of these subproblems are really the same. The

dynamic programming approach seeks to solve each subproblem only once,

thus reducing the number of computations: once the solution to a given

subproblem has been computed, it is stored, the next time the same solution is

needed, it is simply looked up. This approach is especially useful when the

number of repeating subproblems grows exponentially as a function of the

size of the input.

There are two key attributes that a problem must have in order for dynamic

programming to be applicable: optimal substructure and overlapping sub

problems. If a problem can be solved by combining optimal solutions to non-

overlapping sub problems, the strategy is called "divide and conquer". This is

why merge sort and quick sort are not classified as dynamic programming

problems. Such optimal substructures are usually described by means of

recursion.

A good example for a problem that has overlapping sub-problem is the relation

for Nth Fibonacci number.

It is defined as F(n)= F(n-1) + F (n-2) .

Note that the Nth Fibonacci number depends on previous two Fibonacci number.

If we compute F(n) in conventional way, we have to calculate in following
manner

http://en.wikipedia.org/wiki/Exponential_growth
http://en.wikipedia.org/wiki/Optimal_substructure
http://en.wikipedia.org/wiki/Overlapping_subproblem
http://en.wikipedia.org/wiki/Overlapping_subproblem
http://en.wikipedia.org/wiki/Divide_and_conquer_algorithm
http://en.wikipedia.org/wiki/Mergesort
http://en.wikipedia.org/wiki/Quicksort

The similar colored values are those that will be calculated again and again. Note
that F(n-2) is computed 2 times, F(n-3) 3 times and so on … Hence, we are

wasting a lot of time. In fact this recursion will perform 2N operations for a given

N.

Hence, dynamic programming is a very important technique to speed up the

problems that have overlapping sub problems.

12- Network Flow Problem
Definition. A network is an edge-capacitated directed graph, with two

distinguished vertices called the source and the sink.

To repeat that, this time a little more slowly, suppose first that we are given a

directed graph (digraph) G. That is, we are given a set of vertices, and a set of

ordered pairs of these vertices, these pairs being the edges of the digraph. It is

perfectly OK to have both an edge from u to v and an edge from v to u, or both,

or neither, for all u ≠ v. No edge (u, u) is permitted. If an edge e is directed from

vertex v to vertex w, then v is the initial vertex of e and w is the terminal vertex

of e. We may then write v = Init(e) and w = Term(e).

Next, in a network there is associated with each directed edge e of the digraph a

positive real number called its capacity, and denoted by c (e). Finally, two of the

vertices of the digraph are distinguished. One, s, is the source, and the other, t, is

the sink of the network.

Definition. A flow in a network X is a function f that assigns to each edge e of

the network a real number

f(e), in such a way that

(1) For each edge e we have 0 ≤ f(e) ≤ cap(e) and

(2) For each vertex v other than the source and the sink, it is true that

