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1. Concepts and Properties of Algorithms 
 
 
The concept of an algorithm is fundamental to computer science. Algorithms 

exist for many common problems, and designing efficient algorithms plays a 

crucial role in developing large-scale computer systems. Therefore, before we 

proceed further we need to discuss this concept more fully. We begin with a 

definition. 

1.2 What Is an Algorithm? 

Definition: An algorithm is a finite set of instructions that, if followed, 

accomplishes a particular task. 

The reference to “instructions” in the definition implies that there is 

something or someone capable of understanding and following the 

instructions given. 

In addition, all algorithms must satisfy the following criteria: 

1. Input. There are zero or more quantities that are externally 

supplied. 

2. Output. At least one quantity is produced. 

3. Definiteness. Each instruction is clear and unambiguous. 

4. Finiteness. If we trace out the instructions of an algorithm, then 

for all cases, the algorithm terminates after a finite number of 

steps. 

5. Effectiveness. Every instruction must be basic enough to be 

carried out, in principle, by a person using only pencil and paper. 



It is not enough that each operation be definite as in (3); it also 

must be feasible. 

Algorithm definition can be illustrated by a simple diagram (Figure 

1). 
 
 
 
 
 

 

 
For example, one might need to sort a sequence of numbers into increasing order. 

This problem arises frequently in practice and provides fertile ground for 

introducing many standard design techniques and analysis tools. Here is how we 

formally define the sorting problem: 

 
 
• Input: A sequence of n numbers (a1, a2, ..., an). 

 
 
• Output: A permutation (reordering) (a1’, a2’, ..., an’) of the input sequence 

such that a1’≤a2’≤…≤an’. 



For example, given the input sequence (31, 41, 59, 26, 41, 58), a sorting 

algorithm returns as output the sequence (26, 31, 41, 41, 58, 59). Such an input 

sequence is called an instance of the sorting problem. In general, an instance of 

a problem consists of the input (satisfying whatever constraints are imposed in 

the problem statement) needed to compute a solution to the problem. 

2. Fundamentals of Algorithmic Problem Solving 

We can consider algorithms to be procedural solutions to problems. These 

solutions are not answers but specific instructions for getting answers. It is this 

emphasis on precisely defined constructive procedures that makes computer 

science distinct from other disciplines. 
 
 
 

 



2.1 Understanding the Problem 
From a practical perspective, the first thing you need to do before designing 

an algorithm is to understand completely the problem given. Read the problem’s 

description carefully and ask questions if you have any doubts about the problem, 

do a few small examples by hand, think about special cases, and ask questions 

again if needed. 

An input to an algorithm specifies an instance of the problem the algorithm 

solves. It is very important to specify exactly the set of instances the algorithm 

needs to handle. 
 
2.2 Algorithm Design 

The important aspects of algorithm design include creating an efficient algorithm 

to solve a problem in an efficient way using minimum time and space. To solve 

a problem, different approaches can be followed. Some of them can be efficient 

with respect to time consumption, whereas other approaches may be memory 

efficient. However, one has to keep in mind that both time consumption and 

memory usage cannot be optimized simultaneously. If we require an algorithm to 

run in lesser time, we have to invest in more memory and if we require an 

algorithm to run with lesser memory, we need to have more time. 

2.2.1 Methods of Specifying an Algorithm 
Pseudocode is a mixture of a natural language and programming language like 

constructs. Pseudocode is usually more precise than natural language, and its 

usage often yields more succinct algorithm descriptions. 

In the earlier days of computing, the dominant vehicle for specifying algorithms 

was a flowchart, a method of expressing an algorithm by a collection of 

connected geometric shapes containing descriptions of the algorithm’s steps. 



2.2.2 Difference between Algorithm and Pseudocode 

An algorithm is a formal definition with some specific characteristics 

that describes a process, which could be executed to perform a specific 

task. Generally, the word "algorithm" can be used to describe any high 

level task in computer science. On the other hand, pseudocode is an 

informal and human readable description of an algorithm leaving many 

granular details of it. Writing a pseudocode has no restriction of styles 

and its only objective is to describe the high level steps of algorithm in 

a much realistic manner in natural language. 

For example, following is an algorithm for Insertion Sort. 
 
 



2.3 Proving an Algorithm’s Correctness 

Once an algorithm has been specified, you have to prove its correctness. That is, 

you have to prove that the algorithm yields a required result for every legitimate 

input in a finite amount of time. 
 
Whenever we have an algorithm, there are three questions we always ask about 

it: 

1. Is it correct? 

Will the algorithm stop? – Halting Problem. 

Given input and output specifications, will the algorithm function correctly 

with respect to input and output specifications? 

2. How much time does it take, as a function of n? 

T(n) ∞ �(�). Worse case, best case and average case. 

Upper bound and lower bound? 

3. And can we do better? 

In term of time efficiency. 

2.4 Analysis of an Algorithm 

We usually want our algorithms to possess several qualities. After correctness, 

by far the most important is efficiency. In fact, there are two kinds of algorithm 

efficiency: time efficiency, indicating how fast the algorithm runs, and space 

efficiency, indicating how much extra memory it uses. 

Analysis of algorithm is the process of analyzing the problem-solving capability 

of the algorithm in terms of the time and size required (the size of memory for 

storage while implementation). However, the main concern of analysis of 

algorithms is the required time 

or performance. Generally, we perform the following types of analysis: 



 Worst-case: The maximum number of steps taken on any instance of size 

n. 

 Best-case: The minimum number of steps taken on any instance of size n. 

 Average case: An average number of steps taken on any instance of size 

n. 
 
 

 
 

 
2.5 Coding an Algorithm 

Most algorithms are destined to be ultimately implemented as computer 

programs. Programming an algorithm presents both a peril and an opportunity. 

The peril lies in the possibility of making the transition from an algorithm to a 

program either incorrectly or very inefficiently. Some influential computer 

scientists strongly believe that unless the correctness of a computer program is 

proven with full mathematical rigor, the program cannot be considered correct. 

3. Algorithm Complexity 

 
3.1 Running Time Functions 

Most algorithms have a primary parameter N, usually the number of 

data  items  to  be  processed,  which  affects  the  running  time  most 



significantly. The parameter N might be the degree of a polynomial, the 

size of a file to be sorted or searched, the number of nodes in a graph, etc. 

proportional to one of the following functions: 

1. (1) Most instructions of most programs are executed once or at most 

only a few times. If all the instructions of a program have this 

property, we say that its running time is constant. This is obviously 

the situation to strive for algorithm design. 

2. (log N) When the running time of a program is logarithmic, the 

program gets slightly slower as N grows. This running time 

commonly occurs in programs which solve a big problem by 

transforming it into a smaller problem by cutting the size by some 

constant fraction. For our range of interest, the running time can be 

considered to be less than a large constant. The base of the 

logarithm changes the constant, but not by much: when N is a 

thousand, log N is 3 if the base is 10, 10 if the base is 2; when N is 

a million, 1og N is twice as great. Whenever N doubles, log N 

increases by a constant, but log N doesn’t double until N increases 

to N2. 

3. (N) When the running time of a program is linear, it generally is the 

case that a small amount of processing is done on each input 

element. When N is a million, then so is the running time. Whenever 

N doubles, then so does the running time. This is the optimal 

situation for an algorithm that must process N inputs (or produce N 

outputs). 

 
4. (N log N) This running time arises in algorithms which solve a 

 
problem by breaking it up into smaller sub problems, solving them 

independently, and then combining the solutions. For lack of a 



better adjective (linearithmic), we’ll say that the running time of 

such an algorithm is “N log N.” When N is a million, N log N is 

perhaps twenty million. When N doubles, the running times more 

than doubles (but not much more). 

5.  ( N2 ) When the running time of an algorithm is quadratic, it is 

practical for use only on relatively small problems. Quadratic 

running times typically arise in algorithms which process all pairs 
of data items (perhaps in a double nested loop). When N is a 
thousand, the running time is a million. Whenever N doubles, the 
running time increases fourfold. 

6. (N3 ) Similarly, an algorithm which processes triples of data items 

(perhaps in a triple-nested loop) has a cubic running time and is 

practical for use only on small problems. When N is a hundred, the 
running time is a million. Whenever N doubles, the running time 
increases eightfold. 

7. (2N) Few algorithms with exponential running time are likely to be 

appropriate for practical use, though such algorithms arise naturally 

as “brute-force” solutions to problems. When N is twenty, the 
running time is a million. Whenever N doubles, the running time 
squares. 

Example: 
.8 

 



3.2 Space complexity 

The (space) complexity of a program (for a given input) is the number of 

elementary objects that this program needs to store during its execution. This 

number is computed with respect to the size n of the input data 

Space complexity is measured by using polynomial amounts of memory, with 

an infinite amount of time. 

The difference between space complexity and time complexity is that space 

can be reused. Space complexity is not affected by determinism or non 

determinism. Amount of computer memory required during the program 

execution, as a function of the input size 

How to Determine Complexities 
In general, how can you determine the running time of a piece of code? 

The answer is that it depends on what kinds of statements are used. 

1. Sequence of statements 
 

statement 1; 

 
statement 2; 

 
... 

 
statement k; 

 
(Note: this is code that really is exactly k statements; this is not an 

unrolled loop like the N calls to add shown above.) The total time is 

found by adding the times for all statements: 

Total time = time (statement 1) + time (statement 2) + ... + time 

(statement k) 



If each statement is "simple" (only involves basic operations) then 

the time for each statement is constant and the total time is also 

constant: O(1). In the following examples, assume the statements are 

simple unless noted otherwise. 

 

 
2- if-then-else statements 

if (condition) { 

 
Sequence of statements 1 

 
} 

 
else { 

 
sequence of statements 2 

 
} 

 
Here, either sequence 1 will execute, or sequence 2 will execute. 

Therefore, the worst-case time is the slowest of the two possibilities: 

max (time (sequence 1), time (sequence 2)). For example, if 

sequence 1 is O(N) and sequence 2 is O(1) the worst-case time for 

the whole if-then-else statement would be O(N). 

 
3- for loops 

for (i = 0; i < N; i++) { 

sequence of statements 

} 



The loop executes N times, so the sequence of statements also 

executes N times. Since we assume the statements are O(1), the total 

time for the for loop is N * O(1), which is O(N) overall. 

4- Nested loops 

First we'll consider loops where the number of iterations of the inner 

loop is independent of the value of the outer loop's index. For 

example: 

for (i = 0; i < N; i++) { 

for (j = 0; j < M; j++) { 

sequence of statements 

 
} 

 
} 

 
The outer loop executes N times. Every time the outer loop executes, 

the inner loop executes M times. As a result, the statements in the 

inner loop execute a total of N * M times. Thus, the complexity is 

O(N * M). In a common special case where the stopping condition 

of the inner loop is j < N instead of j < M (i.e., the inner loop also 

executes N times), the total complexity for the two loops is O(N2). 

Now let's consider nested loops where the number of iterations of 

the inner loop depends on the value of the outer loop's index. For 

example: 

for (i = 0; i < N; i++) { 

for (j = i+1; j < N; j++) { 



sequence of statements 

 
} 

 
} 



4. Easy and Hard Problems 
We argue that the class of problems that can be solved in polynomial time 

(denoted by P) corresponds well with what we can feasibly compute. But 

sometimes it is difficult to tell when a particular problem is in P or not. 

Theoreticians spend a good deal of time trying to determine whether 

particular problems are in P. To demonstrate how difficult it can be. To make this 

determination, we will survey a number of problems, some of which are known 

to be in P, and some of which we think are (probably) not in P. The difference 

between the two types of problem can be surprisingly small. Throughout the 

following, an ''easy'' problem is one that is solvable in polynomial time; while a 

''hard'' problem is one that we think cannot be solved in polynomial time. When 

we say that a problem is hard, it means that some instances of the problem are 

hard. It does not mean that all problem instances are hard. 

 
4.1 Color Map 

• 2 Color Map (Easy) 

– INPUT: A graph G=(V, E). 

– DECIDE: Can this map 

be Colored with 2 colors so 

that no two adjacent countries 

have the same color? 

• 3 Color Map 3 (Hard) 

– INPUT: A graph G=(V, E). 

– DECIDE: Can this map be colored with 3 colors so that no two 

adjacent countries have the same color? 



• 4 Color Map 4- (Easy) 

 
– INPUT: A graph G=(V, E). 

– DECIDE: Can this map be colored with 4 colors so that no two 

adjacent countries have the same color? 

 
Some Facts 

• Map 2-colorability 

– To solve this problem, we simply color the first country arbitrarily. 

This forces the colors of neighboring countries to be the other 

color, which in turn forces the color of the countries neighboring 

those countries, and so on. If we reach a country which borders two 

countries of different color, we will know that the map cannot be 

two-colored; otherwise, we will produce a two coloring. So this 

problem is easily solvable in polynomial time. 

• Map 3-colorability 

– This problem seems very similar to the problem above, however, it 

turns out to be much harder. No one knows how this problem can 

be solved in polynomial time. (In fact this problem is NP- 

complete.) 

• Map 4-colorability. 

– Here we have an easy problem again. By a famous theorem, any 

map can be four-colored. It turns out that finding such a coloring is 

not that difficult either. 



 
 

 
4.2 Hard problems 

Our usual measure of efficiency is speed, i.e., how long an algorithm takes 

to produce its result. There are some problems, however, for which no efficient 

solution is known. Studies an interesting subset of these problems, which are 

known as NP-complete. 

Why are NP-complete problems interesting? First, although no efficient 

algorithm for an NP complete problem has ever been found, nobody has ever 

proven that an efficient algorithm for one cannot exist. In other words, it is 

unknown whether or not efficient algorithms exist for NP-complete problems. 

Second, the set of NP-complete problems has the remarkable property that if an 

efficient algorithm exists for any one of them, then efficient algorithms exists for 

all of them. This relationship among the NP-complete problems makes the lack 

of efficient solutions all the more tantalizing. Third, several NP-complete 

problems are similar, but not identical, to problems for which we do know of 

efficient algorithms. A small change to the problem statement can cause a big 

change to the efficiency of the best known algorithm. 



5. Travelling salesman problem 

The travelling salesman problem (also called the travelling salesperson problem 

or TSP) asks the following question: "Given a list of cities and the distances 

between each pair of cities, what is the shortest possible route that visits each city 

and returns to the origin city?" It is an NP-hard problem in combinatorial 

optimization, important in theoretical computer science and operations research. 
 
 
 
 

TSP can be modelled as an undirected weighted graph, such that cities are the 

graph's vertices, paths are the graph's edges, and a path's distance is the edge's 

weight. It is a minimization problem starting and finishing at a 

specified vertex after having visited each other vertex exactly once. Often, the 

model is a complete graph (i.e. each pair of vertices is connected by an edge). If 

no path exists between two cities, adding an arbitrarily long edge will complete 

the graph without affecting the optimal tour. 

Asymmetric and symmetric 

In the symmetric TSP, the distance between two cities is the same in each 

opposite direction, forming an undirected graph. This symmetry halves the 

number of possible solutions. In the asymmetric TSP, paths may not exist in both 

directions or the distances might be different, forming a directed graph. Traffic 

collisions, one-way streets, and airfares for cities with different departure and 

arrival fees are examples of how this symmetry could break down. 

https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)
https://en.wikipedia.org/wiki/Vertex_(graph_theory)
https://en.wikipedia.org/wiki/Glossary_of_graph_theory_terms
https://en.wikipedia.org/wiki/Vertex_(graph_theory)
https://en.wikipedia.org/wiki/Vertex_(graph_theory)
https://en.wikipedia.org/wiki/Complete_graph
https://en.wikipedia.org/wiki/Undirected_graph
https://en.wikipedia.org/wiki/Directed_graph
https://en.wikipedia.org/wiki/Traffic_collision
https://en.wikipedia.org/wiki/Traffic_collision
https://en.wikipedia.org/wiki/One-way_traffic


6. Strategies in Algorithm Design 
One very important aspect of problem-solving is devising good strategies. Indeed, 

there are many strategies for algorithm design. 

1. Iteration 
2. Recursion 

3. 4- Color mapping 

4. Traveling Salesman 

5. Shortest Path 

6. Brute force algorithm 

7. Greedy algorithm 

8. Divide and conquer 

9. Dynamic programming 

10. Network flow 

11. Branch and bound 

12. Heuristics 
 
Algorithm: An algorithm is a sequence of computational steps that transform the 

input to an output. It is a tool for solving a well-specified computational problem. 

Strategy: A strategy is an approach (or a series of approaches) devised to solve a 

computational problem. 

Since both are intended to solve computational problems, how are they related? 

Simply put: 

An algorithm is a strategy that always guarantees the correct answer. 

How are they different? 

1. A strategy might yield incorrect results, but a correct algorithm will always 

produce correct results. 

2. Strategies are invented, algorithms are more or less tested and trusted 

standards 



3. Strategies are flexible, but algorithms are rigid i.e. they follow only one set 

of procedures 

6.1 Iteration 

Iteration involves repeating a block of code until a condition is false. During 

iteration, the program makes multiple passes through a block of code. 

Iteration can be achieved using loops or recursion (more on this later). The basic 

loop constructs are: 

 
• The for loop 

• The for-each loop 

• The while loop 

• The do-while loop 

 
6.2 Recursion 
Recursion is repetition achieved through method calls. A recursive method makes 

repeated calls to itself before returning a result. A result is returned if and only if 

a base case exists. 

This base case ensures that the solution converges otherwise an infinite recursion 

occurs which in turn leads to a Stack Overflow. 

Recursion is intuitive because each new method call works on clones of the 

original problem leading to a final result (if it converges). 

 
Example: 

Find the factorial of any positive integer n. 

Analysis 

Mathematically, the factorial of a positive number, n, is the product of all the 

consecutive numbers from 1 to n. Thus, the formula is: 



 
 

 
For example, if n = 3, 4, and 5, then the result in Figure bellow is expected. 

 

Using Iteration 

This solution can be achieved in a variety of ways with iteration. pseudocode 

makes use while loop and the reduce function. The loop is repeated n times. 

Thus, the time complexity for the factorial function is O(n). 
 
 

 

 
Using Recursion 

To better understand how recursion would work for this problem, insight is 

needed. Notice that factorial function in above is simply calling itself with smaller 



values of n. Thus, when the result of smaller subproblems is known, we can easily 

compute the result of other higher problems. This is highlighted in algorithm 

below. Again, since at most n method calls are made during recursion, the time 

complexity is O(n). 
 
 

 

 
 

 



vertex Shorter 
distance 
from C 

Previous 
vertex 

A ∞  

B ∞  

C 0  

D ∞  

E ∞  

 

7. Shortest Path (Dijkstra’s Algorithm): 
 
Dijkstra's Algorithm allows you to calculate the shortest path between one node (you pick which one) 

and every other node in the graph. You'll find a description of the algorithm at the end of this page, but, 

let's study the algorithm with an explained example! Let's calculate the shortest path between node C and 

the other nodes in our graph: 
 

During the algorithm execution, we'll mark every node with its minimum distance to node C (our selected 

node). For node C, this distance is 0. For the rest of nodes, as we still don't know that minimum distance, 

it starts being infinity (∞): 

 

 

 
Visited =[ ] Unvisited=[ABCDE] 

We'll also have a current node. Initially, we set it to C (our selected node). In the image, we mark the 

current node with a red dot. Now, we check the neighbors of our current node (A, B and D) in no specific 

order. Let's begin with B. We add the minimum distance of the current node (in this case, 0) with the 

weight of the edge that connects our current node with B (in this case, 7), and we obtain 0 + 7 = 7. We 



vertex Shorter 
distance 
from C 

Previous 
vertex 

A 1 C 
B 7 C 
C 0  

D 2 C 
E ∞  

 

vertex Shorter 
distance 
from C 

Previous 
vertex 

A 1 C 
B 7 C 
C 0  

D 2 C 
E ∞  

 

compare that value with the minimum distance of B (infinity); the lowest value is the one that remains as 

the minimum distance of B (in this case, 7 is less than infinity). Repeat the same procedure for A, D: 
 
 
 

 
Visited =[] Unvisited=[ABDE] 

We have checked all the neighbors of C. Because of that, we mark it as visited. Let's represent visited 

nodes with a green check mark: 
 

Visited =[C] Unvisited=[ABDE] 

We now need to pick a new current node. That node must be the unvisited node with the smallest 

minimum distance (so, the node with the smallest number and no check mark). That's A. Let's mark it 

with the red dot: 

And now we repeat the algorithm. We check the neighbors of our current node, ignoring the visited nodes. 

This means we only check B. 

For B, we add 1 (the minimum distance of A, our current node) with 3 (the weight of the edge connecting 

A and B) to obtain 4. We compare that 4 with the minimum distance of B (7) and leave the smallest value: 

4. 



vertex Shorter 
distance 
from C 

Previous 
vertex 

A 1 C 
B 4 A 
C 0  

D 2 C 
E ∞  

 

 
 
 
 
 
 

 

  

Visited =[C] Unvisited=[ABDE] 

Afterwards, we mark A as visited and pick a new current node: D, which is the non-visited node with the 
smallest current distance. We repeat the algorithm again. This time, we check B and E. 

 
 
 
 
 

 
Visited =[CA] Unvisited=[BDE] 

For B, we obtain 2 + 5 = 7. We compare that value with B's minimum distance (4) and leave the smallest 

value (4). For E, we obtain 2 + 7 = 9, compare it with the minimum distance of E (infinity) and leave the 

smallest one.)9( We mark D as visited and set our current node to B. 

vertex Shorter 
distance 
from C 

Previous 
vertex 

A 1 C 
B 4 A 
C 0  

D 2 C 
E ∞  

 



vertex Shorter 
distance 
from C 

Previous 
vertex 

A 1 C 
B 4 A 
C 0  
D 2 C 
E 5 B 

 

vertex Shorter 
distance 
from C 

Previous 
vertex 

A 1 C 
B 4 A 
C 0  
D 2 C 
E 5 B 

 

 

 

 
Visited =[CAD] Unvisited=[BE] 

 
Almost there. We only need to check E. 4 + 1 = 5, which is less than E's minimum distance (9), so we 

leave the 5. Then, we mark B as visited and set E as the current node. 
 
 

 

 
Visited =[CADB] Unvisited=[E] 

 
E doesn't have any non-visited neighbors, so we don't need to check anything. We mark it as visited. 

 

 

Visited =[CADBE] Unvisited=[] 

vertex Shorter 
distance 
from C 

Previous 
vertex 

A 1 C 
B 4 A 
C 0  
D 2 C 
E 9 D 

 



8- Brute Force Algorithm 
The brute force solution is simply to calculate the total distance for every possible 

route and then select the shortest one. This is not particularly efficient because it 

is possible to eliminate many possible routes through clever algorithms. 

The time complexity of brute force is O(mn), which is sometimes written as 

O(n*m) . So, if we were to search for a string of "n" characters in a string of "m" 

characters using brute force, it would take us n * m tries. 

Advantages: Guaranteed to find the most efficient circuit. 

Disadvantages: Can be a lot of work to carry out the algorithm. 
 

 
 
The Brute Force Algorithm finds the weight of every Hamilton Circuit and 

chooses the cheapest one. 



Example: 
 
 
 

 

Solution: 

1. Find all possible circuit 
 

 
2. Find the cost for each circuit 

 



3- Choose the lowest cost circuit. 
 

 
 
 

 
 
9- Greedy Algorithm 

Suppose that a problem can be solved by a sequence of decisions. The greedy 

method has that each decision is locally optimal. These locally optimal 

solutions will finally add up to a globally optimal solution. Only a few 

optimization problems can be solved by the greedy method. 

 Shortest paths on a special graph 

Problem: Find a shortest path from v0 to v3. 

 



The greedy method can solve this problem. 

The shortest path: 1 + 2 + 4 = 7. 

Shortest paths on a multi-stage graph 
 
Problem: Find a shortest path from v0 to v3 in the multi-stage graph. 

 

 
Greedy method: v0v1,2v2,1v3 = 23 

Optimal: v0v1,1v2,2v3 = 7 

The greedy method does not work. 



10- Divide and Conquer 
The divide and conquer strategy solves a problem by: 

 
1. Breaking into sub problems that are themselves smaller instances of 

the same type of problem. 

2. Recursively solving these sub problems. 

3. Appropriately combining their answers. 
 

Two types of sorting algorithms which are based on this divide and 

conquer algorithm: 

 
1. Quick sort: Quick sort also uses few comparisons. Like heap sort it 

can sort "in place" by moving data in an array. 

 
2. Merge sort: Merge sort is good for data that's too big to have in memory 

at once, because its pattern of storage access is very regular. It also uses 

even fewer comparisons than heap sort, and is especially suited for data 

stored as linked lists. 

 
Quick sort 
Pivot element can be any element from the array, it can be the first element, the 

last element or any random element. In this example, we will take the rightmost 

element or the last element as pivot. 

Quick Sort Algorithm: Steps on how it works: 

1. Find a “pivot” item in the array. This item is the basis for comparison for 

a single round. 
2. Start a pointer (the left pointer) at the first item in the array. 
3. Start a pointer (the right pointer) at the last item in the array. 



4. While the value at the left pointer in the array is less than the pivot value, 

move the left pointer to the right (add 1). Continue until the value at the 

left pointer is greater than or equal to the pivot value. 
5. While the value at the right pointer in the array is greater than the pivot 

value, move the right pointer to the left (subtract 1). Continue until the 

value at the right pointer is less than or equal to the pivot value. 
6. If the left pointer is greater than or equal to the right pointer, then swap 

the values at these locations in the array. 
7. Move the left pointer to the right by one and the right pointer to the left 

by one. 
8. If the left pointer and right pointer don’t meet, go to step 1. 

Complexity of Quicksort 

Best case: 

Set up a recurrence relation for T(n), the time needed to sort a list of size n. 

Because a single quicksort call involves O(n) work plus two recursive calls on 

lists of size n/2 in the best case, the relation would be: 

T(n) = O(n) + 2T(n/2) 

The master theorem tells us that T(n) = O(n log n). 

 
Average case: 

To sort an array of n distinct elements, quicksort takes O(n log n) time in 
expectation, averaged over all n! permutations of n elements with equal 
probability. We list here three common proofs to this claim providing different 
insights into quicksort's workings. 

 
Worst case: 

In the worst case, however, the two sublists have size 1 and n-1, and the call 

tree becomes a linear chain of n nested calls. The recurrence relation is: 



T(n) = O(n) + T(1) + T(n - 1) = O(n) + T(n - 1) 

This is the same relation as for insertion sort and selection sort, and it solves 

to T(n) = O( n2). 

 



Quick sort algorithm: 

 
Algorithm quicksort(q) 

var list less, pivotList, greater 

if length(q) ≤ 1 

return q 

else 

select a pivot value from q 

for each x in q except the pivot element 

if x < pivot then add x to less 

if x ≥ pivot then add x to greater 

add pivot to pivotList 

return concatenate(quicksort(less), pivotList, quicksort(greater)) 



11- Dynamic programming 
The key idea behind dynamic programming is quite simple. In general, to 

solve a given problem, we need to solve different parts of the problem 

(subproblems), then combine the solutions of the subproblems to reach an 

overall solution. Often, many of these subproblems are really the same. The 

dynamic programming approach seeks to solve each subproblem only once, 

thus reducing the number of computations: once the solution to a given 

subproblem has been computed, it is stored, the next time the same solution is 

needed, it is simply looked up. This approach is especially useful when the 

number of repeating subproblems grows exponentially as a function of the 

size of the input. 

There are two key attributes that a problem must have in order for dynamic 

programming to be applicable: optimal substructure and overlapping sub 

problems. If a problem can be solved by combining optimal solutions to non- 

overlapping sub problems, the strategy is called "divide and conquer". This is 

why merge sort and quick sort are not classified as dynamic programming 

problems. Such optimal substructures are usually described by means of 

recursion. 

A good example for a problem that has overlapping sub-problem is the relation 

for Nth Fibonacci number. 

It is defined as F(n)= F(n-1) + F (n-2) . 

Note that the Nth Fibonacci number depends on previous two Fibonacci number. 

If we compute F(n) in conventional way, we have to calculate in following 
manner 

http://en.wikipedia.org/wiki/Exponential_growth
http://en.wikipedia.org/wiki/Optimal_substructure
http://en.wikipedia.org/wiki/Overlapping_subproblem
http://en.wikipedia.org/wiki/Overlapping_subproblem
http://en.wikipedia.org/wiki/Divide_and_conquer_algorithm
http://en.wikipedia.org/wiki/Mergesort
http://en.wikipedia.org/wiki/Quicksort


 

 
The similar colored values are those that will be calculated again and again. Note 
that F(n-2) is computed 2 times, F(n-3) 3 times and so on … Hence, we are 

wasting a lot of time. In fact this recursion will perform 2N operations for a given 

N. 

Hence, dynamic programming is a very important technique to speed up the 

problems that have overlapping sub problems. 
 
 



12- Network Flow Problem 
Definition. A network is an edge-capacitated directed graph, with two 

distinguished vertices called the source and the sink. 

 
To repeat that, this time a little more slowly, suppose first that we are given a 

directed graph (digraph) G. That is, we are given a set of vertices, and a set of 

ordered pairs of these vertices, these pairs being the edges of the digraph. It is 

perfectly OK to have both an edge from u to v and an edge from v to u, or both, 

or neither, for all u ≠ v. No edge (u, u) is permitted. If an edge e is directed from 

vertex v to vertex w, then v is the initial vertex of e and w is the terminal vertex 

of e. We may then write v = Init(e) and w = Term(e). 

 
Next, in a network there is associated with each directed edge e of the digraph a 

positive real number called its capacity, and denoted by c (e). Finally, two of the 

vertices of the digraph are distinguished. One, s, is the source, and the other, t, is 

the sink of the network. 

Definition. A flow in a network X is a function f that assigns to each edge e of 

the network a real number 

 
f(e), in such a way that 

 
(1) For each edge e we have 0 ≤ f(e) ≤ cap(e) and 

(2) For each vertex v other than the source and the sink, it is true that 
 



 
 

 



 

 
 
 



 
 
 



 
 
 
 
 
 



 
 
 
 
 



 
 
 

 


