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Groups, Rings, and Fields 
 

Groups, rings, and fields are the fundamental elements of a branch of 

mathematics known as abstract algebra, or modern algebra. In abstract algebra, 

we are concerned with sets on whose elements we can operate algebraically; 

that is, we can combine two elements of the set, perhaps in several ways, to 

obtain a third element of the set. These operations are subject to specific 

rules, which define the nature of the set. By convention, the notation for the 

two principal classes of operations on set elements is usually the same as the 

notation for addition and multiplication on ordinary numbers. However, it is 

important to note that, in abstract algebra, we are



 

 
 

not limited to ordinary arithmetical operations. All this should become clear 

as we proceed. 
 

Groups 
 

A group G, sometimes denoted by {G, ·} is a set of elements with a binary 

operation,  denoted  by  ·, that  associates  to  each  ordered  pair  (a,  b)  of 

elements in G an element (a · b) in G, such that the following axioms are 

obeyed: 
 

The operator · is generic and can refer to addition, multiplication, or some other 

mathematical operation. 
 

(A1) Closure:                If a and b belong to G, then a · b is also in G. 

(A2) Associative:         a · (b · c) = (a · b) · c for all a, b, c in G.
 

(A3)               Identity 

element: 

 

There is an element e in G such that a · e = e · a = a for all a in G.

 

(A4) Inverse element:  For each a in G there is an element a' in G such that a · a' = a' · a = 

e. 
 
 
 
 
 
 
 
 
 
 
 
 

 
Let Nn denote a set of n distinct symbols that, for convenience, we represent as 

{1,2,...,n}. A permutation of n distinct symbols is a one-to-one mapping from Nn 

to Nn. Define Sn  to be the set of all permutations of n distinct symbols. Each 
element of Sn is represented by a permutation of the integers in {1,2,...,n}. It is 
easy to demonstrate that Sn is a group: 

 

 
A1:  If π, ρ∊ Sn, then the composite mapping π · ρ is formed by permuting the 

elements of ρ according to the permutation  π. For example, {3,2,1} · 

{1,3,2} = {2,3,1}. Clearly, π · ρ∊Sn. 

A2:  The composition of mappings is also easily seen to be associative. 
 

A3:  The identity mapping is the permutation that does not alter the order of



 
 

 

the n elements. For Sn, the identity element is {1,2,...,n}. 
 

A4:  For any π ∊ Sn, the mapping that undoes the permutation defined by π is 

the inverse element for π .There will always be such an inverse. For 
example {2,3,1} · {3,1,2} = {1,2,3} 

 

 
 
 

If a group has a finite number of elements, it is referred to as a finite group, 

and the order of the group is equal to the number of elements in the group. 

Otherwise, the group is an infinite group. 
 

A group is said to be abelian if it satisfies the following additional condition: 
 

 

(A5) Commutative:  a · b = b · a for all a, b in G. 
 

 
The set of integers (positive, negative, and 0) under addition is an abelian group. 

The set of nonzero real numbers under multiplication is an abelian group. The 

set Sn from the preceding example is a group but not an abelian group for n > 2. 
 
 

 

When the group operation is addition, the identity element is 0; the inverse 

element of a is a; and subtraction is defined with the following rule: a b = a 

+ (b). 
 
 
 
 
 
 
 
 
 

 

Cyclic Group 
 
We  define  exponentiation  within  a  group  as  repeated  application  of the 
group operator, so that a

3  
= a · a · a. Further, we define a

0  
= e, the identity 

element; and a
-n 

= (a')
n
. A group G is cyclic if every element of G is a power 

 

a
k  

(k is an integer) of a fixed element a        G. The element a is said to 

generate the group G, or to be a generator of G. A cyclic group is always 

abelian, and may be finite or infinite.



 
 
 

The  additive  group  of integers  is an  infinite  cyclic  group  generated  by  the 

element 1. In this case, powers are interpreted additively, so that n is the nth 

power of 1. 
 
 
 
 
 

Rings 
 

A ring R, sometimes denoted by {R, +, x}, is a set of elements with two binary 

operations, called addition and multiplication, such that for all a, b, c in R the 

following axioms are obeyed: 
 
Generally, we do not use the multiplication symbol, x, but denote multiplication by the 

concatenation of two elements. 
 

 

(A1-A5) R is an abelian group with respect to addition; that is, R satisfies axioms A1 through 

A5. For the case of an additive group, we denote the identity element as 0 and the inverse 

of a as a. 
 

(M1) Closure under multiplication:                If a and b belong to R, then ab is also in R. 

(M2) Associativity of multiplication:              a(bc) = (ab)c for all a, b, c in R. 

(M3) Distributive laws:                                   a(b  +  c)  =  ab  +  ac  for  all  a,  b,  c  in  R. 

(a + b)c = ac + bc for all a, b, c in R. 
 

 

In essence, a ring is a set in which we can do addition, subtraction [a b = a + 

(-b)], and multiplication without leaving the set. 
 

 
 
 
 
 
 
 

With respect to addition and multiplication, the set of all n-square matrices over 

the real numbers is a ring. 
 
 

 

A ring is said to be commutative if it satisfies the following additional 

condition: 
 

 

(M4) Commutativity of multiplication:  ab = ba for all a, b in R.



Let S be the set of even integers (positive, negative, and 0) under the usual 

operations of addition and multiplication. S is a commutative ring. The set of all 

n-square matrices defined in the preceding example is not a commutative ring. 
 

 
 
 
 

the following axioms: 
 
 
 

identity:                                   R. 
 

(M6) No zero divisors:           If a, b in R and ab = 0, then either a = 0 or b = 0. 

Let S be the set of integers, positive, negative, and 0, under the usual operations 

of addition and multiplication. S is an integral domain. 

 

Fields 
 
 
 

 
in F the following axioms are obeyed: 

 

 

(A1M6) F is an integral domain; that is, F satisfies axioms A1 through A5 

through M6. 
 
 

inverse:                              aa
-1 

= (a
-1

)a = 1. 
 
 
 
 
 

 

the following rule: a/b = a(b
-1

). 

Familiar examples of fields are the rational numbers, the real numbers, and the 

complex numbers. Note that the set of all integers is not a field, because not 

every element of the set has a multiplicative inverse; in fact, only the elements 1 

and -1 have multiplicative inverses in the integers. 

 

 

 
 
 
 
 
 
 
 
 
 

Next, we define an integral domain, which is a commutative ring that obeys 
 
 

(M5)              Multiplicative There is an element 1 in R such that a1 = 1a = a for all a in

 
 
 
 
 
 
 
 
 
 
 
 

A field F, sometimes denoted by {F, +, x}, is a set of elements with two

binary operations, called addition and multiplication, such that for all a, b, c 
 
 

 

and M1 
 

(M7)         Multiplicative For each a in F, except 0, there is an element a-1 in F such that

 

 
 
 
 

In  essence,  a  field  is  a  set  in  which  we  can  do  addition,  subtraction, 

multiplication, and division without leaving the set. Division is defined with 
 

 
 
 
 
 
 
 
 
 
 

The next figure summarizes the axioms that define groups, rings, and fields.



 

 
 

Figure  Group, Ring, and Field 

 
 

  



The Euclidean Algorithm 
 

One of the basic techniques of number theory is the Euclidean algorithm, which 

is a simple procedure for determining the greatest common divisor of two 

positive integers. 
 

Greatest Common Divisor 
 

Recall that nonzero b is defined to be a divisor of a if a = mb for some m, where 

a, b, and m are integers. We will use the notation gcd(a, b) to mean the  

greatest common divisor of a and b. The positive integer c is said to be the 

greatest common divisor of a and b if 
 

1.  c is a divisor of a and of b; 

2.  any divisor of a and b is a divisor of c. 

An equivalent definition is the following: 

gcd(a, b) = max[k, such that k|a and k|b] 

Because we require that the greatest common divisor be positive, gcd(a, b) = 

gcd(a, b) = gcd(a, b) = gcd(a, b). In general, gcd(a, b) = gcd(|a|, |b|). 
 
 

gcd(60, 24) = gcd(60, 24) = 12 
 
 

 

Also, because all nonzero integers divide 0, we have gcd(a, 0) = |a|. 
 

We stated that two integers a and b are relatively prime if their only common 

positive integer factor is 1. This is equivalent to saying that a and b are 

relatively prime if gcd(a, b) = 1. 
 
 

8 and 15 are relatively prime because the positive divisors of 8 are 1, 2, 4, and 8, and the 

positive divisors of 15 are 1, 3, 5, and 15, so 1 is the only integer on both lists. 
 

 

Finding the Greatest Common Divisor 
 

The  Euclidean  algorithm  is  based  on  the  following  theorem:  For  any 

nonnegative integer a and any positive integer b,



 

 
 

Equation 4-4 
 

 
 
 

gcd(55, 22) = gcd(22, 55 mod 22) = gcd(22, 11) = 11 
 

 

To see that  Equation (4.4) works, let d = gcd(a, b). Then, by the definition of 

gcd, d|a and d|b. For any positive integer b, a can be expressed in the form 
 

 

a = kb + r≡≡  r (mod b) 
 

a mod b = r 
 

 

with k, r integers. Therefore, (a mod b) = a kb for some integer k. But 

because d|b, it also divides kb. We also have d|a. Therefore, d|(a mod b). 

This shows that d is a common divisor of b and (a mod b). Conversely, if d 

is a common divisor of b and (a mod b), then d|kb and thus d|[kb + (a mod 

b)], which is equivalent to d|a. Thus, the set of common divisors of a and b is 

equal to the set of common divisors of b and (a mod b). Therefore, the gcd 

of one pair is the same as the gcd of the other pair, proving the theorem. 
 

Equation (4.4) can be used repetitively to determine the greatest common 

divisor. 
 

gcd(18, 12) = gcd(12, 6) = gcd(6, 0) = 6 

gcd(11, 10) = gcd(10, 1) = gcd(1, 0) = 1 
 
 

 

The Euclidean algorithm makes repeated use of  Equation (4.4) to determine 

the greatest common divisor, as follows. The algorithm assumes a > b > 0. It 

is acceptable to restrict the algorithm to positive integers because gcd(a, b) = 

gcd(|a|, |b|). 
 
EUCLID(a, b) 

1.   A ← a; B ← b 

2.   if B = 0  return  A = gcd(a, b) 

3.   R = A mod B 

4.   A ← B 

5.   B ← R 

6.   goto 2



 

 
 

The algorithm has the following progression: 
 

 
 
 
 

To find gcd(1970, 1066) 

1970 = 1 x 1066 + 904 gcd(1066, 904) 

1066 = 1 x 904 + 162 gcd(904, 162) 

904 = 5 x 162 + 94 gcd(162, 94) 

162 = 1 x 94 + 68 gcd(94, 68) 

94 = 1 x 68 + 26 gcd(68, 26) 

68 = 2 x 26 + 16 gcd(26, 16) 

26 = 1 x 16 + 10 gcd(16, 10) 

16 = 1 x 10 + 6 gcd(10, 6) 

10 = 1 x 6 + 4 gcd(6, 4) 

6 = 1 x 4 + 2 gcd(4, 2) 

4 = 2 x 2 + 0 gcd(2, 0) 

Therefore, gcd(1970, 1066) = 2 

 

 
 

 
 
 

  



 
 

Finite Fields Of the Form GF(2n) 
 
Earlier in this chapter, we mentioned that the order of a finite field must be 

of the form p
n 

where p is a prime and n is a positive integer. we looked at the 
special case of finite fields with order p. We found that, using modular 
arithmetic in Zp, all of the axioms for a field (Figure 4.1) are satisfied. For 

polynomials over p
n
, with n > 1, operations modulo p

n  
do not produce a 

field. In this section, we show what structure satisfies the axioms for a field 
in a set with p

n 
elements, and concentrate on GF (2

n
). 

 

Motivation 
 

Virtually all encryption algorithms, both symmetric and public key, involve 
arithmetic operations on integers. If one of the operations that is used in the 
algorithm is division, then we need to work in arithmetic defined over a 
field. For convenience and for implementation efficiency, we would also 
like to work with integers that fit exactly into a given number of bits, with 
no wasted bit patterns. That is, we wish to work with integers in the range 0 

through 2
n 

1, which fit into an n-bit word. 
 
 

Suppose we wish to define a conventional encryption algorithm that operates on 

data 8 bits at a time and we wish to perform division. With 8 bits, we can 

represent integers in the range 0 through 255. However, 256 is not a prime number, 

so that if arithmetic is performed in Z256  (arithmetic modulo 256), this set of 

integers will not be a field. The closest prime number less than 256 is 251. Thus, 

the set Z251, using arithmetic modulo 251, is a field. However, in this case the 8-

bit patterns representing the integers 251 through 255 would not be used, resulting 

in inefficient use of storage. 
 
 

As the preceding example points out, if all arithmetic operations are to be used,  
and  we  wish  to  represent  a  full  range  of  integers  in  n  bits,  then arithmetic 

modulo will not work; equivalently, the set of integers modulo 2
n
, for n > 1, 

is not a field. Furthermore, even if the encryption algorithm uses 
n

 

only addition and multiplication, but not division, the use of the set Z2    is 
questionable, as the following example illustrates. 

 

Suppose we wish to use 3-bit blocks in our encryption algorithm, and use 

only the operations of addition and multiplication. Then arithmetic modulo 8 

is well defined, as shown in Table 4.1. However, note that in the multiplication 

table, the nonzero integers do not appear an equal number of



 

 
 

times. For example, there are only four occurrences of 3, but twelve 
occurrences of 4. On the other hand, as was mentioned, there are finite fields 
of the form GF (2

n
) so there is in particular a finite field of order 2

3  
= 8. 

Arithmetic for this field is shown in  Table 4.5. In this case, the number of 
occurrences of the nonzero integers is uniform for multiplication. To 
summarize, 

 

Integer 1 2 3 4 5 6 7 

Occurrences in Z8 4 8 4 12 4 8 4 

Occurrences in GF(2
3
) 7 7 7 7 7 7 7 

 

 

Table 4.5. Arithmetic in GF(2
3
) 

 
(This item is displayed on page 121 in the print version) 

 

 
 



 

 
 

For the moment, let us set aside the question of how the matrices of  Table 

4.5 were constructed and instead make some observations. 
 

1.  The addition and multiplication tables are symmetric about the main 

diagonal, in conformance to the commutative property of addition and 

multiplication. This property is also exhibited in  Table 4.1, which uses 

mod  8 arithmetic. 
2.  All the nonzero elements defined by  Table 4.5 have a multiplicative 

inverse, unlike the case with Table 4.1. 
3.  The scheme defined by  Table 4.5 satisfies all the requirements for a 

finite field. Thus, we can refer to this scheme as GF(2
3
). 

 
For  convenience,  we  show  the  3-bit  assignment  used  for  each  of  the 
elements of GF (2

3
). 

 

Intuitively, it would seem that an algorithm that maps the integers unevenly 
onto themselves might be cryptographically weaker than one that provides a 

uniform mapping. Thus, the finite fields of the form GF(2
n
) are attractive for 

cryptographic algorithms. 
 

To summarize, we are looking for a set consisting of 2
n  

elements, together 
with a definition of addition and multiplication over the set that define a 

field. We can assign a unique integer in the range 0 through 2
n  

1 to each 
element of the set. Keep in mind that we will not use modular arithmetic, as 
we have seen that this does not result in a field. Instead, we will show how 
polynomial arithmetic provides a means for constructing the desired field. 

 

Modular Polynomial Arithmetic 
 
Consider the set S of all polynomials of degree n 1 or less over the field Zp. 
Thus, each polynomial has the form 

 

 
 

where each ai takes on a value in the set {0, 1,..., p 1}. There are a total of p
n
 

different polynomials in S.



 

 
 

For p = 3 and n = 2, the 3
2 

= 9 polynomials in the set are 

0 x 2x 

1 x + 1 2x + 1 

2 x + 2 2x + 2 

For p = 2 and n = 3, the 2
3 

= 8 the polynomials in the set are 

0 x + 1 x
2 

+ x 

1 x
2 

x
2 

+ x + 1 

x x
2 

+ 1 
 

 

 
 

With the appropriate definition of arithmetic operations, each such set S is a 

finite field. The definition consists of the following elements: 
 

1.  Arithmetic follows the ordinary rules of polynomial arithmetic using 

the basic rules of algebra, with the following two refinements. 
 

Arithmetic on the coefficients is performed modulo p. That is, we use 

the rules of arithmetic for the finite field Zp. 
 

2.  If multiplication results in a polynomial of degree greater than n 1, 

then the polynomial is reduced modulo some irreducible polynomial 

m(x) of degree n. That is, we divide by m(x) and keep the remainder. 

For a polynomial f(x), the remainder is expressed as r(x) = f(x) mod 

m(x). 
 
The Advanced Encryption Standard (AES) uses arithmetic in the finite field 

GF (2
8
), with the irreducible polynomial m(x) = x

8 
+ x

4 
x

3 
+ x + 1. Consider 

the two polynomials f(x) = x
6 

+ x
4 

+ x
2 

+ x + 1 and g(x) = x
7 

+ x + 1. Then 
 

f(x) + g(x) = x
6 

+ x
4 

x
2 

+ x + 1 + x
7 

+ x + 1 

f(x) x g(x) = x
13 

+ x
11 

+ x
9 

+ x
8 

+ x
7 

+ 

x
7 

+ x
5 

+ x
3 

+ x
2 

+ x + 
 

x
6 

+ x
4 

+ x
2 

+ x + 1 
 

= x
13 

+ x
11 

+ x
9 

+ x
8 

+ x
6 

+ x
5 

+ x
4 

+ x
3 

+ 1



 

 
 

 
 

 
 

Therefore, f(x) x g(x) mod m(x) = x
7 

+ x
6 

+ 1 
 
As with ordinary modular arithmetic, we have the notion of a set of residues 
in modular polynomial arithmetic. The set of residues modulo m(x), an nth- 

degree polynomial, consists of p
n 

elements. Each of these elements is 

represented by one of the p
n 

polynomials of degree m < n. 
 

The residue class [x + 1], modulo m(x), consists of all polynomials a(x) such 

that a(x)         (x + 1) (mod m(x)). Equivalently, the residue class [x + 1] consists 

of all polynomials a(x) that satisfy the equality a(x) mod m(x) = x + 1. 
 
 

It can be shown that the set of all polynomials modulo an irreducible nth- 

degree polynomial m(x) satisfies the axioms in  Figure 4.1, and thus forms a 

finite field. Furthermore, all finite fields of a given order are isomorphic; 

that  is,  any  two  finite-field  structures  of  a  given  order  have  the  same 

structure, but the representation, or labels, of the elements may be different. 
 

To construct the finite field GF (2
3
), we need to choose an irreducible 

polynomial of degree 3. There are only two such polynomials: (x
3 

+ x
2 

+ 1) 

and  (x
3   

+  x  +  1).  Using  the  latter,   Table  4.6  shows  the  addition  and 

multiplication tables for GF (2
3
). Note that this set of tables has the identical 

structure to those of  Table 4.5. Thus, we have succeeded in finding a way to 

define a field of order 2
3
.



 

 

Table  4.6. Polynomial Arithmetic Modulo (x
3 

+ x + 1) 

(This item is displayed on page 124 in the print version) 

 
 

 
 

Finding the Multiplicative Inverse 
 

Just as the Euclidean algorithm can be adapted to find the greatest common 

divisor  of  two  polynomials,  the  extended  Euclidean  algorithm  can  be 

adapted to find the multiplicative inverse of a polynomial. Specifically, the 

algorithm will find the multiplicative inverse of b(x) modulo m(x) if the degree 

of b(x) is less than the degree of m(x) and gcd[m(x), b(x)] = 1. If m(x) is 

an irreducible polynomial, then it has no factor other than itself or 1, so that 

gcd[m(x), b(x)] = 1. The algorithm is as follows: 
 

EXTENDED EUCLID [m(x), b(x)] 

1. [A1(x), A2(x), A3(x)] ←[1, 0, m(x)]; [B1(x), B2(x), 

B3(x)] ← [0, 1, b(x)] 

2. if B3(x) = 0   return  A3(x) = gcd[m(x), b(x)]; no 

Inverse 
3. if B3(x) = 1   return B3(x) = gcd[m(x), b(x)]; 

B2(x) = b(x)
1 

mod m(x) 
4. Q(x) = quotient of A3(x)/B3(x) 

5. [T1(x), T2(x), T3(x)] ← [A1(x)  Q(x)B1(x), A2(x) 

Q(x)B2(x), A3(x)  QB3(x)] 

6. [A1(x), A2(x), A3(x)] ← [B1(x), B2(x), B3(x)]



 

 
 

7. [B1(x), B2(x), B3(x)] ← [T1(x), T2(x), T3(x)] 

8. goto 2 
 
 

Table 4.7 shows the calculation of the multiplicative inverse of (x
7 

+ x + 1) mod 

(x
8 

+ x
4 

+ x
3 

+ x + 1). The result is that (x
7 

+ x + 1)
1 

= (x
7
). That is, (x

7 
+ x + 

1)(x
7
) ≡1 (mod (x

8 
+ x

4 
+ x

3 
+ x + 1)). 

 

Table 4.7. Extended Euclid [(x
8 

+ x
4 

+ x
3 

+ x + 1), (x
7 

+ x + 1)] 

 
(This item is displayed on page 125 in the print version) 

Initialization A1(x) = 1; A2(x) = 0; A3(x) = x
8  

+ x
4
 + x

3
 + x + 1 

B1(x) = 0; B2(x) = 1; B3(x) = x
7 

+ x + 1    

Iteration 1 Q(x)                                      =                                      x 

A1(x)   =  0;  A2(x)   =  1;  A3(x)   =  x
7    

+  x   +  1 

B1(x) = 1; B2(x) = x; B3(x) = x
4 

+ x
3 

+ x
2 

+ 1 

Iteration 2 Q(x)           =           x
3               

+           x
2               

+           1 

A1(x)  =  1;  A2(x)  =  x;  A3(x)  =  x
4   

+  x
3   

+  x
2  

+  1 

B1(x) = x
3 

+ x
2 

+ 1; B2(x) = x
4 

+ x
3 

+ x + 1; B3(x) = x 

Iteration 3 Q(x)           =           x
3               

+           x
2               

+           x 

A1(x) = x
3 

+ x
2 

+ 1; A2(x) = x
4 

+ x
3 

+ x + 1; A3(x) = x 
B1(x) = x

6 
+ x

2 
+ x + 1; B2(x) = x

7
; B3(x) = 1 

Iteration 4 B3(x) = gcd[(x
7  

+ x + 1), (x
8  

+ x
4  

+ x
3  

+ x + 1)] = 1 

B2(x) = (x
7 

+ x + 1)
1 

mod (x
8 

+ x
4 

+ x
3 

+ x + 1) = x
7

 

 

 
 
 
 

Computational Considerations 
 

A polynomial f(x) in GF(2
n
) 

 

 
 
 
 

can be uniquely represented by its n binary coefficients (an1an2...a0). Thus, 
every polynomial in GF(2

n
) can be represented by an n-bit number.



 

 
 

Tables  4.5  and   4.6  show  the  addition  and  multiplication  tables  for  GF(2
3
) 

modulo m(x) = (x
3 

+ x + 1).  Table 4.5 uses the binary representation, and  Table 

4.6 uses the polynomial representation. 
 

 

Addition 
 
We have seen that addition of polynomials is performed by adding 
corresponding coefficients and, in the case of polynomials over Z2  addition 
is just the XOR operation. So, addition of two polynomials in GF(2

n
) 

corresponds to a bitwise XOR operation. 
 

 

Consider the two polynomials in GF(2
8
) from our earlier example: f(x) = x

6 
+ x

4
 

+ x
2 

+ x + 1 and g(x) = x
7 

+ x + 1. 

(x
6 

+ x
4 

+ x
2 

+ x + 1) + (x
7
+ x 

+ 1) 

= x
7 

+ x
6 

+ x
6 

+ x
4 

+ 

x
2                            (polynomial notation)

 

(01010111) ⊕ (10000011)            = (11010100)              (binary notation) 

(hexadecimal
{57} ⊕ {83}                            = {D4} notation)

[7]

 

 
 

[7]  
A basic refresher on number systems (decimal, binary, hexadecimal) can be 

found at the Computer Science Student Resource Site at 

WilliamStallings.com/StudentSupport.html. Here each of two groups of 4 bits in 

a byte is denoted by a single hexadecimal character, the two characters enclosed 

in brackets. 
 
 

 

Multiplication 
 
There is no simple XOR operation that will accomplish multiplication in 
GF(2

n
)   However,   a   reasonably   straightforward,   easily   implemented 

technique  is  available.  We  will  discuss  the  technique  with  reference  to 
GF(2

8
) using m(x) = x

8  
+ x

4  
+ x

3  
+ x + 1, which is the finite field used in 

AES. The technique readily generalizes to GF (2
n
). 

 

The technique is based on the observation that



 

 
 

Equation 4-8 
 

 
 
 
 

 
A moment's thought should convince you that  Equation (4.8) is true; if not, 

divide it out. In general, in GF (2
n
) with an nth-degree polynomial p(x), we 

have x
n 

mod p(x) = [p(x) x
n
]. 

 

Now, consider a polynomial in GF (2
8
), which has the form f(x) = b7x

7  
+ 

b6x
6 

+ b5x
5 

+ b4x
4 

+ b3x
3 

+ b2x
2 

+ b1x + b0. If we multiply by x, we have 
 

Equation 4-9 
 

 
 
 
 

 
If b7  = 0, then the result is a polynomial of degree less than 8, which is 

already in reduced form, and no further computation is necessary. If b7 = 1, 

then reduction modulo m(x) is achieved using Equation (4.8): 
 

x x f(x) = (b6x
7 

+ b5x
6 

+ b4x
5 

+ b3x
4 

+ b2x
3 

+ 
 

b1x
2 

+ b0x) + (x
4 

+ x
3 

+ x + 1) 
 

It follows that multiplication by x (i.e., 00000010) can be implemented as a 
1-bit left shift followed by a conditional bitwise XOR with (00011011), 
which represents (x

4 
+ x

3 
+ x + 1). To summarize, 

 

Equation 4-10 
 



 

 
 

Multiplication  by  a  higher  power  of  x  can  be  achieved  by  repeated 
application    of     Equation    (4.10).    By    adding    intermediate    results, 
multiplication by any constant in GF(2

8
) can be achieved. 

 

 

In an earlier example, we showed that for f(x) = x
6 

+ x
4 

+ x
2 

+ x + 1, g(x) = x
7 

+ 

x + 1, and m(x) = x
8  

+ x
4  

+ x
3  

+ x + 1, f(x) x g(x) mod m(x) = x
7  

+ x
6  

+ 1. 
Redoing   this   in   binary   arithmetic,   we   need   to   compute   (01010111)   x 
(10000011). First, we determine the results of multiplication by powers of x: 

 
(01010111) x (00000001) = (10101110) 

 

 

(01010111) x (00000100) = (01011100) ⊕ (00011011) = (01000111) 

(01010111) x (00001000) = (10001110) 

 

(01010111) x (00010000) = (00011100) ⊕ (00011011) = (00000111) 

(01010111) x (00100000) = (00001110) 

 

(01010111) x (01000000) = (00011100) 

(01010111) x (10000000) = (00111000) 

So, 

(01010111)  x  (10000011)  =  (01010111)  x  [(00000001)  x  (00000010)  x 

(10000000)] 
 

 

= (01010111) ⊕ (10101110) ⊕ (00111000) = (11000001) 
 

which is equivalent to x7 + x6 + 1. 
 

 

Using a Generator 
 

An equivalent technique for defining a finite field of the form GF(2
n
) using 

the same irreducible polynomial, is sometimes more convenient. To begin, 
we need two definitions: A generator g of a finite field F of order q (contains 
q elements) is an element whose first q 1 powers generate all the nonzero 

elements of F. That is, the elements of F consist of 0, g
0
, g

1
,..., g

q2
. Consider 

a field F defined by a polynomial f(x). An element b contained in F is called 
a root of the polynomial if f(b) = 0. Finally, it can be shown that a root g of



 

 
 

an irreducible polynomial is a generator of the finite field defined on that 

polynomial. 
 

Let us consider the finite field GF (2
3
), defined over the irreducible polynomial 

x
3  

+ x + 1, discussed previously. Thus, the generator g must satisfy f(x) = g
3 

+ g + 1 = 0. Keep in mind, as discussed previously, that we need not find a 
numerical solution to this equality. Rather, we deal with polynomial arithmetic 
in which arithmetic on the coefficients is performed modulo 2. Therefore, the 

solution to the preceding equality is g
3 

= g 1 = g + 

1. We now show that g in fact generates all of the polynomials of degree less 

than 3. We have the following: 
 

g
4 

= g(g
3
) = g(g + 1) = g

2 
+ g 

 

g
5 

= g(g
4
) = g(g

2 
+ g) = g

3 
+ g

2 
= g

2 
+ g + 1 

 

g
6 

= g(g
5
) = g(g

2 
+ g + 1) = g

3 
+ g

2 
+ g = g

2 
+ g + g + 1 = g

2 
+ 1 

g
7 

= g(g
6
) = g(g

2 
+ 1) = g

3 
+ g = g + g + 1 = 1 = g

0
 

We see that the powers of g generate all the nonzero polynomials in GF(2
3
). 

Also, it should be clear that g
k 

= g
k mod 7 

for any integer k.  Table 4.8 shows 
the power   representation,   as   well   as   the   polynomial   and   binary 
representations. 

 

Table 4.8. Generator for GF(2
3
) using x

3 
+ x + 1 

Power 

Representation 

Polynomial 

Representation 

Binary 

Representation 

Decimal (Hex) 

Representation 

0 0 000 0 

g
0 

( = g
7
) 1 001 1 

g
1 g 010 2 

g
2 

g
2 100 4 

g
3 g + 1 011 3 

g
4 

g
2 

+ g 110 6 

g
5 

g
2 

+ g + 1 111 7 

g
6 

g
2 

+ 1 101 5 



 

 
 

This power representation makes multiplication easy. To multiply in the power 
notation, add exponents modulo 7. For example, g

4 
x g

6 
= g

(10 mod 7) 
= g

3  
= g 

+ 1. The same result is achieved using polynomial arithmetic, as follows: we 
have g

4 
= g

2 
+ g and g

6 
= g

2 
+ 1. Then, (g

2 
+ g) x (g

2 
+ 1) = g

4 
+ g

3 
+ g

2 
+ 1. 

Next, we need to determine (g
4 

+ g
3 

+ g
2 

+ 1) mod (g
3 

+ g + 1) by division: 
 
 
 

 

 
 

We get a result of g + 1, which agrees with the result obtained using the 

power representation. 
 

Table 4.9 shows the addition and multiplication tables for GF(2
3
) using the 

power represenation. Note that this yields the identical results to the 

polynomial representation (Table 4.6) with some of the rows and columns 

interchanged. 
 

Table 4.9. GF(2
3
) Arithmetic Using Generator for the Polynomial (x

3 
+ x + 1) 

(This item is displayed on page 128 in the print version) 



 

 

In general, for GF(2
n
) with irreducible polynomial f(x), determine g

n  
= f(x) 

g
n
. Then calculate all of the powers of g from g

n+1 
through g

2n2
. The elements 

of the field correspond to the powers of g from through g
2n2

, plus the value 

0. For multiplication of two elements in the field, use the equality g
k 

= g
k mod

 
(2n1) 

for any integer k. 
 
 
 

 

Finite Fields of the Form GF (p) 
 

we defined a field as a set that obeys all of the axioms of  Figure 4.1 and 
gave some examples of infinite fields. Infinite fields are not of particular 
interest in the context of cryptography. However, finite fields play a crucial 
role in many cryptographic algorithms. It can be shown that the order of a finite 

field (number of elements in the field) must be a power of a prime p
n
, where n 

is a positive integer. a prime number is an integer whose only positive 
integer factors are itself and 1. That is, the only positive integers 

that are divisors of p are p and 1. 
 

The finite field of order p
n  

is generally written GF(p
n
); stands for Galois 

field, in honor of the mathematician who first studied finite fields. Two 

special cases are of interest for our purposes. For n = 1, we have the finite field 

GF(p); this finite field has a different structure than that for finite fields with n 

> 1 and is studied in this section. . 
 

Finite Fields of Order p 
 

For a given prime, p, the finite field of order p, GF(p) is defined as the set Zp 

of integers {0, 1,..., p 1}, together with the arithmetic operations modulo p. 
 
that  the  set  Zn   of  integers  {0,1,...,n  1},  together  with  the  arithmetic 

operations modulo n, is a commutative ring (Table 4.2). We further observed 
that any integer in Zn has a multiplicative inverse if and only if that integer is 

relatively prime to n 
 
If n is prime, then all of the nonzero integers in Zn are relatively prime to n, 

and therefore there exists a multiplicative inverse for all of the nonzero integers 
in Zn. Thus, we can add the following properties to those listed in Table 4.2 for 

Zp:



∊ 

 

 
[4]  

As stated in the discussion of  Equation (4.3), two integers are relatively 

prime if their only common positive integer factor is 1. 
 
 

Multiplicative inverse (w
1
)   For each w 

 

Zp, w ≠0, there exists a

z ∊ Zp such that w x z ≡ 1 (mod p) 
 
 

 

Because w is relatively prime to p, if we multiply all the elements of Zp by 

w,  the  resulting  residues  are  all  of  the  elements  of  Zp   permuted.  Thus, 

exactly one of the residues has the value 1. Therefore, there is some integer 
Zp  in that, when multiplied by w, yields the residue 1. That integer is the 

multiplicative inverse of w, designated w
1
. Therefore, Zp  is in fact a finite 

field.   Further,   Equation  (4.3)   is  consistent  with   the  existence  of  a 

multiplicative inverse and can be rewritten without the condition: 

Equation 4-5 

 
 
 
 

 

Multiplying both sides of  Equation (4.5) by the multiplicative inverse of a, 

we have: 
 

 

((a
1
) x a x b)  ≡ ((a

1
) x a x c)(mod p) 

 

b                     ≡c (mod p) 
 
 

 

The simplest finite field is GF(2). Its arithmetic operations are easily 

summarized: 
 

 

Addition         Multiplication             Inverses 
 



 
 
 
 

In this case, addition is equivalent to the exclusive-OR (XOR) operation, and 

multiplication is equivalent to the logical AND operation. 
 
 
 

Table 4.3 shows GF (7). This is a field of order 7 using modular arithmetic 
modulo 7. As can be seen, it satisfies all of the properties required of a field 
(Figure 4.1). Compare this table with  Table 4.1. In the latter case, we see 
that the set Z8 using modular arithmetic modulo 8, is not a field. Later in this 

chapter, we show how to define addition and multiplication operations on Z8 in 

such a way as to form a finite field. 
 

Table  4.3. Arithmetic in GF (7) 

 
(This item is displayed on page 111 in the print version) 

 

 
 
 
 

Finding the Multiplicative Inverse in GF (p) 
 

It is easy to find the multiplicative inverse of an element in GF(p) for small 

values of p. You simply construct a multiplication table, such as shown in



 

 
 

Table 4.3b, and the desired result can be read directly. However, for large 

values of p, this approach is not practical. 
 
If gcd(m, b) = 1, then b has a multiplicative inverse modulo m. That is, for 
positive integer b < m, there exists a b

1  
< m such that bb

1  
= 1 mod m. The 

Euclidean algorithm can be extended so that, in addition to finding gcd(m, 
b), if the gcd is 1, the algorithm returns the multiplicative inverse of b. 

 

 

EXTENDED EUCLID (m, b) 

1. (A1, A2, A3) ← (1, 0, m); (B1, B2, B3) ← (0, 1, b) 
2. if B3 = 0 return A3 = gcd(m, b); no inverse 

3. if B3 = 1 return B3 = gcd(m, b); B2 = b
1 

mod m 
 
 
 

4.  

 

5. (T1, T2, T3) ← (A1  QB1, A2  QB2, A3  QB3) 

6. (A1, A2, A3) ← (B1, B2, B3) 

7. (B1, B2, B3) ← (T1, T2, T3) 

8. goto 2 
 
 
 

Throughout the computation, the following relationships hold: 
 

 

mT1 + bT2 = T3  mA1 + bA2 = A3  mB1 + bB2 = B3 
 
 

To see that this algorithm correctly returns gcd(m, b), note that if we equate 

A  and  B  in  the  Euclidean  algorithm  with  A3  and  B3  in  the  extended 

Euclidean algorithm, then the treatment of the two variables is identical. At 

each iteration of the Euclidean algorithm, A is set equal to the previous 

value of B and B is set equal to the previous value of A mod B. Similarly, at 

each  step  of  the  extended  Euclidean  algorithm,  A3  is  set  equal  to  the 

previous value of B3, and B3 is set equal to the previous value of A3 minus 

the integer quotient of A3 multiplied by B3. This latter value is simply the 

remainder of A3 divided by B3, which is A3 mod B3. 
 

Note also that if gcd(m, b) = 1, then on the final step we would have B3 = 0 

and A3 = 1. Therefore, on the preceding step, B3 = 1. But if B3 = 1, then we 

can say the following:



 

 
 

mB1 + bB2 = B3 

mB1 + bB2 = 1 

bB2 = 1 mB1 

bB2 ≡ 1 (mod m) 
 

And B2 is the multiplicative inverse of b, modulo m. 
 
 

Table  4.4  is  an  example  of  the  execution  of  the  algorithm.  It  shows  that 

gcd(1759, 550) = 1 and that the multiplicative inverse of 550 is 355; that is, 550 

x 335 ≡ 1 (mod 1759). 

 

Table 4.4. Finding the Multiplicative Inverse of 550 in GF(1759) 

Q A1 A2 A3 B1 B2 B3 

 
1 0 1759 0 1 550 

3 0 1 550 1 3 109 

5 1 3 109 5 16 5 

21 5 16 5 106 339 4 

1 106 339 4 111 355 1 
 

 
 
 
 
 
 
 

 
 
 
 
 
 

  



Modular Arithmetic 
 

Given any positive integer n and any nonnegative integer a, if we divide a by 

n, we get an integer quotient q and an integer remainder r that obey the 

following relationship: 
 

Equation 4-1 
 

 
 

 

where ⌊x⌋is the largest integer less than or equal to x. 
 

Figure 4.2 demonstrates that, given a and positive n, it is always possible to 

find q and r that satisfy the preceding relationship. Represent the integers on 

the number line; a will fall somewhere on that line (positive a is shown, a 

similar demonstration can be made for negative a). Starting at 0, proceed to 

n, 2n, up to qn such that qn ≤a and (q + 1)n > a. The distance from qn to a is 

r, and we have found the unique values of q and r. The remainder r is often 

referred to as a  residue. 
 

Figure 4.2. The Relationship a = qn + r, 0 ≤ r < n



 

 
 

 
 

 

a = 11; n = 7; 11 = 1 x 7 + 4; r = 4 q = 1 

a = -11; n = 7; -11 = (-2) x 7 + 3; r = 3 q = -2 

 

 
 

If a is an integer and n is a positive integer, we define a mod n to be the 

remainder when a is divided by n. The integer n is called the modulus. Thus, 

for any integer a, we can always write: 
 

 

a = ⌊a/n⌋x n + (a mod n) 
 

 

11 mod 7 = 4;                          -11 mod 7 = 3 
 
 

 

Two integers a and b are said to be congruent modulo n, if (a mod n) = (b 

mod n). This is written as a ≡ b (mod n). 
 

We have just used the operator mod in two different ways: first as a binary 

operator that produces a remainder, as in the expression a mod b; second as a 

congruence relation that shows the equivalence of two integers, as in the 

expression To distinguish the two uses, the mod term is enclosed in parentheses 

for a congruence relation; this is common but not universal in the literature. 

See Appendix D for a further discussion. 
 
 

73 ≡ 4 (mod 23);   21 ≡ -9 (mod 10) 
 

 

Divisors 
 

We say that a nonzero b divides a if a = mb for some m, where a, b, and m 

are integers. That is, b divides a if there is no remainder on division. The 

notation is commonly used to mean b divides a. Also, if b|a, we say that b is 

a  divisor of a. 
 
 

The positive divisors of 24 are 1, 2, 3, 4, 6, 8, 12, and 24.



 
 
 
 

 

The following relations hold: 
 

•   If a|1, then a = ±1. 

•   If a|b and b|a, then a = ±b. 

•   Any b ≠ 0 divides 0. 

•   If b|g and b|h, then b|(mg + nh) for arbitrary integers m and n. 

To see this last point, note that 

If b|g, then g is of the form g = b x g1 for some integers g1. 

If b|h, then h is of the form h = b x h1 for some integers h1. 

So 

mg + nh = mbg1 + nbh1 = b x (mg1 + nh1) 
 

and therefore b divides mg + nh. 
 
 

b = 7; g = 14; h = 63; m = 3; n = 2. 

 
7|14 and 7|63. To show: 7|(3 x 14 + 2 x 63) 

We have (3 x 14 + 2 x 63) = 7(3 x 2 + 2 x 9) 

And it is obvious that 7|(7(3 x 2 + 2 x 9)) 
 
 

 

Note that if a ≡ 0 (mod n), then n|a. 
 

Properties of Congruences 
 

Congruences have the following properties: 
 

1.  a ≡ b (mod n) if n|(a b). 

2.  a ≡ b (mod n) implies b ≡ a (mod n).. 

3.  a ≡ b (mod n) and b ≡ c (mod n) imply a ≡ c (mod n).



 

 
 

To demonstrate the first point, if n|(a b), then (a b) = kn for some k. So we 

can write a = b + kn. Therefore, (a mod n) = (reminder when b + kn is 

divided by n) = (reminder when b is divided by n) = (b mod n) 
 

23 ≡ 8 (mod 5) because 23 8 = 15 = 5 3 

11 ≡ 5 (mod 8) because 11 5 = 16 = 8 x (2) 

81 ≡ 0 (mod 27) because 81 0 = 81 = 27 x 3 

 

The remaining points are as easily proved. 
 

Modular Arithmetic Operations 
 

Note that, by definition (Figure 4.2), the (mod n) operator maps all integers 

into the set of integers {0, 1,... (n 1)}. This suggests the question: Can we 

perform arithmetic operations within the confines of this set? It turns out that 

we can; this technique is known as  modular arithmetic. 
 
 
 

 

Modular arithmetic exhibits the following properties: 
 

1.  [(a mod n) + (b mod n)] mod n = (a + b) mod n 

2.  [(a mod n) (b mod n)] mod n = (a b) mod n 

3.  [(a mod n) x (b mod n)] mod n = (a x b) mod n 
 

We demonstrate the first property. Define (a mod n) = ra and (b mod n) = rb. 

Then we can write a = ra  + jn for some integer j and b = rb  + kn for some 

integer k. Then 
 

(a + b) mod n = (ra + jn + rb +kn) mod n 
 

= (ra + rb (k + j)n) mod n 
 

= (ra + rb) mod n 
 

= [(a mod n] + (b mod n)] mod n 
 

The remaining properties are as easily proved. Here are examples of the 

three properties:



 

 
 

11 mod 8 = 3; 15 mod 8 = 7 

[(11 mod 8) + (15 mod 8)] mod 8 = 10 mod 8 = 2 

(11 + 15) mod 8 = 26 mod 8 = 2 

[(11 mod 8) (15 mod 8)] mod 8 = 4 mod 8 = 4 

(11 15) mod 8 = 4 mod 8 = 4 

[(11 mod 8) x (15 mod 8)] mod 8 = 21 mod 8 = 5 

(11 x 15) mod 8 = 165 mod 8 = 5 
 

 
 

Exponentiation  is  performed  by  repeated  multiplication,  as  in  ordinary 

arithmetic. 
 

To find 11
7 

mod 13, we can proceed as follows: 

11
2 

= 121 ≡ 4 (mod 13) 

11
4 

= (11
2
)
2 

≡ 4
2 

≡ 3 (mod 13) 

11
7 

≡ 11 x 4 x 3 ≡ 132 ≡ 2 (mod 13) 
 

 
 

Thus, the rules for ordinary arithmetic involving addition, subtraction, and 

multiplication carry over into modular arithmetic. 
 

Table 4.1 provides an illustration of modular addition and multiplication 

modulo 8. Looking at addition, the results are straightforward and there is a 

regular pattern to the matrix. Both matrices are symmetric about the main 

diagonal, in conformance to the commutative property of addition and 

multiplication. As in ordinary addition, there is an additive inverse, or negative, 

to each integer in modular arithmetic. In this case, the negative of an integer 

x is the integer y such that (x + y) mod 8 = 0. To find the additive inverse of 

an integer in the left-hand column, scan across the corresponding row of the 

matrix to find the value 0; the integer at the top of that column is the additive 

inverse; thus (2 + 6) mod 8 = 0. Similarly, the entries in the multiplication table 

are straightforward. In ordinary arithmetic, there is a multiplicative inverse, or 

reciprocal, to each integer. In modular arithmetic mod 8, the multiplicative 

inverse of x is the integer y such that (x x y) mod 8 
= 1 mod 8. Now, to find the multiplicative inverse of an integer from the 
multiplication table, scan across the matrix in the row for that integer to find 
the value 1; the integer at the top of that column is the multiplicative inverse;



 

 
 

thus (3 x 3) mod 8 = 1. Note that not all integers mod 8 have a multiplicative 

inverse; more about that later. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 4.1. Arithmetic Modulo 8



 

 
 

 
 

 
 

Properties of Modular Arithmetic 
 

Define the set Zn as the set of nonnegative integers less than n: 

Zn = {0, 1,...,(n 1)} 

 

 

This is referred to as the set of residues, or  residue classes modulo n. To be 
more precise, each integer in Zn represents a residue class. We can label the 

residue classes modulo n as [0], [1], [2],...,[n 1], where 
 

[r] = {a: a is an integer, a ≡ r (mod n)} 
 

 
 
 
 
 
 
 

The residue classes modulo 4 are



 

 
 

The residue classes modulo 4 are 

 
[0] = { ..., 16, 12, 8, 4, 0, 4, 8, 12, 16,... } 

 
[1] = { ..., 15, 11, 7, 3, 1, 5, 9, 13, 17,... } 

 
[2] = { ..., 14, 10, 6, 2, 2, 6, 10, 14, 18,... } 

 
[3] = { ..., 13, 9, 5, 1, 3, 7, 11, 15, 19,... } 

 

 
 

Of all the integers in a residue class, the smallest nonnegative integer is the 

one usually used to represent the residue class. Finding the smallest 

nonnegative integer to which k is congruent modulo n is called reducing k 

modulo n. 
 

If we perform modular arithmetic within Zn, the properties shown in  Table 

4.2  hold  for  integers  in  Zn.  Thus,  Zn   is  a  commutative  ring  with  a 
multiplicative identity element (Figure 4.1). 

 

Table 4.2. Properties of Modular Arithmetic for Integers in Zn 

Property Expression 

Commutative laws (w     +     x)     mod      n     = (x  + w) mod n 
(w x x) mod n = (x x w) mod n        

Associative laws [(w   +   x)   +   y]   mod   n   =   [w   +   (x   +   y)]   mod   n 

[(w x x) x y] mod n = [w x (x x y)] mod n 

Distributive laws [w  +  (x  +  y)]  mod  n  =  [(w  x  x)  +  (w  x  y)]  mod  n 

[w + (x x y)] mod n = [(w + x) x (w + y)] mod n 

Identities (0        +        w)        mod        n  =  w mod n 
(1 + w) mod n = w mod n        

Additive inverse (-w) 
 

 

For each w ≡ Zn, there exists a z such 

 

 

th 

 

 

at w + z 

 

 

0 mo 

 

 

d n 
 

 
 

There is one peculiarity of modular arithmetic that sets it apart from ordinary 

arithmetic. First, observe that, as in ordinary arithmetic, we can write the 

following:



 

 
 

Equation 4-2 
 

 
 

 

(5 + 23) ≡  (5 + 7)(mod 8}; 23 ≡ 7 (mod 8) 
 

 

Equation (4.2) is consistent with the existence of an additive inverse. Adding 

the additive inverse of a to both sides of  Equation (4.2), we have: 
 

((a) + a + b) ≡  ((a) + a + c)(mod n) 
 

b ≡ c (mod n) 
 

However, the following statement is true only with the attached condition: 

Equation 4-3 

 
 
 
 

 

where the term relatively prime is defined as follows: two integers are 

relatively prime if their only common positive integer factor is 1. Similar to the 

case of  Equation (4.2), we can say that  Equation (4.3) is consistent with the 

existence of a multiplicative inverse. Applying the multiplicative inverse of a 

to both sides of Equation (4.2), we have: 
 

((a
1
)ab) ≡  ((a

1
)ac)(mod n) 

 

b ≡ c (mod n) 
 
 

To see this, consider an example in which the condition of  Equation (4.3) does 

not hold. The integers 6 and 8 are not relatively prime, since they have the common 

factor 2. We have the following: 

 
6 x 3 = 18 ≡ 2 (mod 8) 

 
6 x 7 = 42 ≡ 2 (mod 8) 

Yet 3 ≢7 (mod 8).



 

 
 

The reason for this strange result is that for any general modulus n, a multiplier 

a that is applied in turn to the integers 0 through (n 1) will fail to produce a 

complete set of residues if a and n have any factors in common. 
 
 

With a = 6 and n = 8, 

 

Z8 0 1 2 3 4 5 6 7 

Multiply by 6 0 6 12 18 24 30 36 42 

Residues 0 6 4 2 0 6 4 2 

 

 
Because we do not have a complete set of residues when multiplying by 6, more 

than one integer in Z8 maps into the same residue. Specifically, 6 x 0 mod 8 = 6 

x 4 mod 8; 6 x 1 mod 8 = 6 x 5 mod 8; and so on. Because this is a many-to-one 

mapping, there is not a unique inverse to the multiply operation. 

 
However, if we take a = 5 and n = 8, whose only common factor is 1, 

 

Z8 0 1 2 3 4 5 6 7 

Multiply by 6 0 5 10 15 20 25 30 35 

Residues 0 5 2 7 4 1 6 3 

 

 
The line of residues contains all the integers in Z8, in a different order. 

 

 
 
 
 

In general, an integer has a multiplicative inverse in Zn  if that integer is 

relatively prime to n.  Table 4.1c shows that the integers 1, 3, 5, and 7 have a 
multiplicative inverse in Z8, but 2, 4, and 6 do not. 

 
 
 
 
 
 



 
 
 
 
 
 
 

 

Polynomial Arithmetic 
 

Before pursuing our discussion of finite fields, we need to introduce the 

interesting subject of polynomial arithmetic. We are concerned with 

polynomials in a single variable x, and we can distinguish three classes of 

polynomial arithmetic: 
 

•   Ordinary polynomial arithmetic, using the basic rules of algebra 

• Polynomial arithmetic in which the arithmetic on the coefficients is 

performed modulo p; that is, the coefficients are in GF(p) 

• Polynomial arithmetic in which the coefficients are in GF(p), and the 

polynomials are defined modulo a polynomial m(x) whose highest 

power is some integer n 
 

This section examines the first two classes, and the next section covers the 

last class. 
 

Ordinary Polynomial Arithmetic 
 

A polynomial of degree n (integer n ≥0) is an expression of the form 
 

 
 
where the ai  are elements of some designated set of numbers S, called the 
coefficient set, and an ≠0. We say that such polynomials are defined over the 
coefficient set S. 

 

A zeroth-degree polynomial is called a constant polynomial and is simply an 

element of the set of coefficients. An nth-degree polynomial is said to be a 

monic polynomial if an = 1. 
 

In the context of abstract algebra, we are usually not interested in evaluating 

a polynomial for a particular value of x [e.g., f(7)]. To emphasize this point, 

the variable x is sometimes referred to as the indeterminate.



 

 
 

Polynomial arithmetic includes the operations of addition, subtraction, and 
multiplication. These operations are defined in a natural way as though the 
variable x was an element of S. Division is similarly defined, but requires 
that  S  be  a  field. Examples  of  fields include  the  real  numbers,  rational 
numbers, and Zp  for p prime. Note that the set of all integers is not a field 
and does not support polynomial division. 

 

Addition and subtraction are performed by adding or subtracting corresponding 

coefficients. Thus, if 
 

 
 
 
 

 

Then addition is defined as 
 

 
 

and multiplication is defined as 
 

 
 

where 
 

ck = a0bk1 + a1bk1 + ... + ak1b1 + akb0 

 

In the last formula, we treat ai as zero for i > n and bi as zero for i > m. Note 

that the degree of the product is equal to the sum of the degrees of the two 
polynomials. 

 

As an example, let f(x) = x
3 

+ x
2 

+ 2 and g(x) = x
2 

x + 1, where S is the set 

of integers. Then 
 

f(x) + g(x) = x
3 

+ 2x
2 

x + 3 

f(x) g(x) = x
3 

+ x + 1 

f(x) x g(x) = x
5 

+ 3x
2 

2x + 2



 

 
 

Figures 4.3a through  4.3c show the manual calculations. We comment on 

division subsequently. 
 

Figure 4.3. Examples of Polynomial Arithmetic 

 

 
 
 
 

Polynomial Arithmetic with Coefficients in Zp 
 

Let us now consider polynomials in which the coefficients are elements of 

some field F. We refer to this as a polynomial over the field F. In that case, it 

is easy to show that the set of such polynomials is a ring, referred to as a 

polynomial ring. That is, if we consider each distinct polynomial to be an 

element of the set, then that set is a ring. 
 

In fact, the set of polynomials whose coefficients are elements of a 

commutative ring forms a polynomial ring, but that is of no interest in the 

present context. 
 

When polynomial arithmetic is performed on polynomials over a field, then 

division is possible. Note that this does not mean that exact division is possible. 

Let us clarify this distinction. Within a field, given two elements a and b, the 

quotient a/b is also an element of the field. However, given a ring R that is 

not a field, in general division will result in both a quotient and a remainder; 

this is not exact division.



 
 
 
 
 
 

Consider the division 5/3 within a set S. If S is the set of rational numbers, 

which is a field, then the result is simply expressed as 5/3 and is an element of 

S. Now suppose that S is the field Z7. In this case, we calculate (using  Table 
4.3c): 

 

5/3 = (5 x 3
1
) mod 7 = (5 x 5) mod 7 = 4 

 
which is an exact solution. Finally, suppose that S is the set of integers, which is 

a ring but not a field. Then 5/3 produces a quotient of 1 and a remainder of 2: 

 
5/3 = 1 + 2/3 

 
5 = 1 x 3 + 2 

 
Thus, division is not exact over the set of integers. 

 
 

 

Now, if we attempt to perform polynomial division over a coefficient set that 

is not a field, we find that division is not always defined. 
 

 

If the coefficient set is the integers, then (5x
2
)/(3x) does not have a solution, 

because it would require a coefficient with a value of 5/3, which is not in the 

coefficient set. Suppose that we perform the same polynomial division over Z7. 

Then we have (5x2)/(3x) = 4x which is a valid polynomial over Z7. 
 
 

 

However, as we demonstrate presently, even if the coefficient set is a field, 

polynomial  division  is  not  necessarily  exact.  In  general,  division  will 

produce a quotient and a remainder: 
 

Equation 4-6 
 

 
 
 
 

 

If the degree of f(x) is n and the degree of g(x) is m, (m ≥n), then the degree 

of the quotient q(x) m n is and the degree of the remainder is at most m - 1.



 

 
 

With  the  understanding  that  remainders  are  allowed,  we  can  say  that 

polynomial division is possible if the coefficient set is a field. 
 

In an analogy to integer arithmetic, we can write f(x) mod g(x) for the 

remainder r(x) in  Equation (4.6). That is, r(x) = f(x) mod g(x). If there is no 

remainder [i.e., r(x) = 0 ], then we can say g(x) divides f(x), written as g(x)|f(x); 

equivalently, we can say that g(x) is a factor of f(x) or g(x) is a divisor of f(x). 
 
 

For the preceding example and [f(x) = x
3 

+ x
2 

+ 2 and g(x) = x
2 

x + 1], f(x)/g(x) 

produces a quotient of q(x) = x + 2 and a remainder r(x) = x as shown in  Figure 

4.3d. This is easily verified by noting that 
 

q(x)g(x) + r(x) = (x + 2)(x
2 

x + 1) + x = (x
3 

+ x
2 

x + 2) + x 
 

= x3 + x2 + 2 = f(x) 
 
 

 

For our purposes, polynomials over GF (2) are of most interest. That in 

GF(2), addition is equivalent to the XOR operation, and multiplication is 

equivalent to the logical AND operation. Further, addition and subtraction 

are equivalent mod 2: 1 + 1 = 1 1 = 0; 1 + 0 = 1 0 = 1; 0 + 1 = 0 1 = 1. 
 

Figure 4.4 shows an example of polynomial arithmetic over GF(2). For f(x) 

= (x
7 

+ x
5 

+ x
4 

+ x
3 

+x + 1) and g(x) = (x
3 

+ x + 1), the figure shows f(x) + 

g(x); f(x) g(x); f(x) x g(x); and f(x)/g(x). Note that g(x)|f(x)



 
 
 
 

 
Figure 4.4. Examples of Polynomial Arithmetic over GF(2) 

 

 
 

A polynomial f(x) over a field F is called irreducible if and only if f(x) 

cannot be expressed as a product of two polynomials, both over F, and both



 

 
 

of degree lower than that of f(x). By analogy to integers, an irreducible 

polynomial is also called a prime polynomial. 
 

 

The polynomial f(x) = x
4  

+ 1 over GF(2) is reducible, because x
4  

+ 1 = (x + 

1)(x
3 

+ x
2 

+ x + 1) 
 

 

Consider the polynomial f(x) = x
3 

+ x + 1. It is clear by inspection that x is 

not a factor of f(x). We easily show that x + 1 is not a factor of f(x): 
 

 
 

Thus f(x) has no factors of degree 1. But it is clear by inspection that if f(x) 

is reducible, it must have one factor of degree 2 and one factor of degree 1. 

Therefore, f(x) is irreducible. 
 

Finding the Greatest Common Divisor 
 

We can extend the analogy between polynomial arithmetic over a field and 

integer arithmetic by defining the greatest common divisor as follows. The 

polynomial c(x) is said to be the greatest common divisor of a(x) and b(x) if 
 

1.  c(x) divides both a(x) and b(x); 

2.  any divisor of a(x) and b(x) is a divisor of c(x). 
 

An equivalent definition is the following: gcd[a(x), b(x)] is the polynomial 

of maximum degree that divides both a(x) and b(x). 
 

We can adapt the Euclidean algorithm to compute the greatest common divisor 

of two polynomials. The equality in  Equation (4.4) can be rewritten as the 

following theorem: 
 

Equation 4-7 
 



 
 
 
 

 

The  Euclidean  algorithm for  polynomials  can  be  stated  as  follows.  The 

algorithm assumes that the degree of a(x) is greater than the degree of b(x). 

Then, to find gcd[a(x), b(x)], 
 

EUCLID[a(x), b(x)] 

1. A(x)← a(x); B(x) ← b(x) 

2. if B(x) = 0 return A(x) = gcd[a(x), b(x)] 

3. R(x) = A(x) mod B(x) 

4. A(x) ← B(x) 

5. B(x) ← R(x) 

6. goto 2 
 

Find gcd[a(x), b(x)] for a(x) = x
6 

+ x
5 

+x
4 

+ x
3 

+ x
2 

+x + 1 and b(x) = x
4 

+ x
2
 

+ x + 1. 
 

 
 

A(x) = a(x); B(x) = b(x) 
 

R(x) = A(x) mod B(x) = x
3 

+ x
2 

+ 1 
 

A(x) = x
4 

+ x
2 

+ x + 1; B(x) = x
3 

+ x
2 

+ 1 
 

Summary 
 

 

We began this section with a discussion of arithmetic with ordinary 

polynomials.   In   ordinary   polynomial   arithmetic,   the   variable   is   not 

evaluated; that is, we do not plug a value in for the variable of the polynomials. 

Instead, arithmetic operations are performed on polynomials (addition, 

subtraction, multiplication, division) using the ordinary rules of algebra. 

Polynomial division is not allowed unless the coefficients are elements of a 

field.



 

 
 

Next, we discussed polynomial arithmetic in which the coefficients are 

elements of GF(p). In this case, polynomial addition, subtraction, 

multiplication, and division are allowed. However, division is not exact; that 

is, in general division results in a quotient and a remainder. 
 

Finally, we showed that the Euclidean algorithm can be extended to find the 

greatest  common  divisor  of  two  polynomials  whose  coefficients  are 

elements of a field. 
 

All of the material in this section provides a foundation for the following 
section, in which polynomials are used to define finite fields of order p

n
. 

  



 

Polynomials with Coefficients in GF (28) 
 

we discussed polynomial arithmetic in which the coefficients are in Zp  and 

the  polynomials  are  defined  modulo  a  polynomial  M(x)  whose  highest 
power is some integer n. In this case, addition and multiplication of coefficients 
occurred within the field Zp; that is, addition and multiplication were 

performed modulo p. 
 

The AES document defines polynomial arithmetic for polynomials of degree 

3 or less with coefficients in GF(2
8
). The following rules apply: 

 
1.  Addition  is  performed  by  adding  corresponding  coefficients  in 

GF(2
8
).  if  we  treat  the  elements  of  GF(2

8
)  as  8-bit  strings,  then 

addition is equivalent to the XOR operation. So, if we have 
 

Equation 5-8 
 

 
 

Equation 5-9 

then



 

 
 

a(x) + b(x) = (a3 ⊕b3)x
3 

+ (a
2 ⊕b2)x

2 
+ (a1 ⊕b1)x + (a0 ⊕b0) 

 

2.  Multiplication is performed as in ordinary polynomial multiplication, 

with two refinements: 

a.  Coefficients are multiplied in GF(2
8
). 

b.  The resulting polynomial is reduced mod (x
4 

+ 1). 
 
We need to keep straight which polynomial we are talking about.  that each 

element  of  GF(2
8
)  is  a  polynomial  of  degree  7  or  less  with  binary 

coefficients, and multiplication is carried out modulo a polynomial of degree 
8. Equivalently, each element of GF(2

8
) can be viewed as an 8-bit byte 

whose bit values correspond to the binary coefficients of the corresponding 
polynomial.  For  the  sets  defined  in  this  section,  we  are  defining  a 
polynomial ring in which each element of this ring is a polynomial of degree 
3  or  less  with  coefficients  in  GF(2

8
),  and  multiplication  is  carried  out 

modulo a polynomial of degree 4. Equivalently, each element of this ring 
can be viewed as a 4-byte word whose byte values are elements of GF(2

8
) 

that correspond to the 8-bit coefficients of the corresponding polynomial. 
 

 

We denote the modular product of a(x) and b(x) by a(x) ⊕b(x). To compute 

d(x) = a(x) ⊕b(x), the first step is to perform a multiplication without the 

modulo operation and to collect coefficients of like powers. Let us express 
this as c(x) = a(x) x b(x) Then 

 

Equation 5-10 
 

 
 
 
 

 

where 
 

c0 = a0 · b0 
 

 

c1 = (a1 · b0) ⊕ (a0 · b1) 

 

c2 = (a2 · b0) ⊕ (a1 · b1) ⊕ (a0 · b2)



 
 
 
 

c3 = (a3 · b0) ⊕ (a2 · b1) ⊕ (a1 · b2)       (a0 · b3) 
 

c4 = (a3 · b1) ⊕ (a2 · b2) ⊕ (a1 · b3) 

 

c5 = (a3 · b2) ⊕ (a2 · b3) 
 

c6 = (a3 · b3) 
 

The final step is to perform the  modulo operation: 
 

d(x) = c(x) mod (x
4 

+ 1) 
 

That is, d(x) must satisfy the equation 
 

 

c(x) = [(x
4 

+ 1) x q(x)] ⊕d(x) 
 

such that the degree of d(x) is 3 or less. 
 

A practical technique for performing multiplication over this polynomial 

ring is based on the observation that 
 

Equation 5-11 
 

 
 
 
 

 

If we now combine Equations (5.10) and (5.11), we end up with 
 

d(x) = c(x) mod (x
4 

+ 1) = [c6x
6 

+ c5x
5 

+ c4x
4 

+ c3x
3 

+ c2x
2 

+ c1x + c0] mod 
(x4 + 1) 

 

 

= c3x
3 

+ (c2 ⊕c6)x
2 

+ (c1 ⊕c5)x + (c0 ⊕c4) 
 

Expanding  the  ci   coefficients,  we  have  the  following  equations  for  the 
coefficients of d(x): 

 

 

d0 = (a0 · b0) ⊕ (a3 · b1) ⊕ (a) · b2) ⊕ (a1 · b3)



 
 
 

d1 = (a1 · b0) ⊕ (a0 · b1) ⊕ (a3 · b2) ⊕ (a) · b3) 
 

d2 = (a2) · b0) ⊕ (a1 · b1) ⊕ (a0 · b2) ⊕ (a3 · b3) 

d3 = (a3 · b0) ⊕ (a) · b1) ⊕ (a1 · b2) ⊕ (a0 · b3) 

This can be written in matrix form: 

Equation 5-12 
 

 
 
 
 
 
 
 

MixColumns Transformation 
 

In  the  discussion  of  MixColumns,  it  was  stated  that  there  were  two 

equivalent ways of defining the transformation. The first is the matrix 

multiplication shown in Equation (5.3), repeated here: 
 

 
 
 
 

 

The  second  method  is  to  treat  each  column  of  State  as  a  four-term 
polynomial with coefficients in GF(2

8
). Each column is multiplied modulo 

(x
4 

+ 1) by the fixed polynomial a(x), given by 
 

a(x = {03}x
3 

+ {01}x
2 

+ {01}x + {02}



 

 
 

From  Equation (5.8), we have a3  = {03}; a2  = {01}; a0  = {02}. For the jth 
column of State, we have the polynomial colj(x) = s3,jx

3 
+ s2,jx

2 
+ s1,jx + s0,j. 

Substituting into  Equation (5.12), we can express d(x) = a(x) x colj(x) as 
 

 
 
 
 

 

which is equivalent to  Equation (5.3). 
 

Multiplication by x 
 
 

Consider the multiplication of a polynomial in the ring by x: c(x) = x ⊕b(x). We 

have 
 

 

c(x) = x ⊕b(x) = [x x (b3x
3
) + b2x

2 
+ b1x + b0)] mod (x

4 
+ 1) 

 

= (b3x
4 

+ b2x
3 

+ b1x
2 

+ b0x) mod (x
4 

+ 1) 
 

= b2x
3 

+ b1x
2 

+ b0x + b3 

 

Thus, multiplication by x corresponds to a 1-byte circular left shift of the 4 bytes  

in  the  word  representing  the  polynomial.  If  we  represent  the polynomial as 

a 4-byte column vector, then we have 
 

 

 
 

 

  



Evaluation Criteria For AES 
 

The Origins of AES 
 

in 1999, NIST issued a new version of its DES standard (FIPS PUB 46-3) 

that indicated that DES should only be used for legacy systems and that 

triple DES (3DES) be used. 3DES has two attractions that assure its widespread 

use over the next few years. First, with its 168-bit key length, it overcomes the 

vulnerability to brute-force attack of DES. Second, the underlying encryption 

algorithm in 3DES is the same as in DES. This algorithm has been subjected 

to more scrutiny than any other encryption algorithm over a longer period of 

time, and no effective cryptanalytic attack based on the algorithm rather than 

brute force has been found. Accordingly, there  is  a  high  level  of  confidence  

that  3DES  is  very  resistant  to cryptanalysis. If security were the only 

consideration, then 3DES would be an appropriate choice for a standardized 

encryption algorithm for decades to come. 
 

The principal drawback of 3DES is that the algorithm is relatively sluggish 

in software. The original DES was designed for mid-1970s hardware 

implementation and does not produce efficient software code. 3DES, which 

has three times as many rounds as DES, is correspondingly slower. A 

secondary drawback is that both DES and 3DES use a 64-bit block size. For 

reasons of both efficiency and security, a larger block size is desirable.



 

 
 

Because of these drawbacks, 3DES is not a reasonable candidate for long- term 

use. As a replacement, NIST in 1997 issued a call for proposals for a new 

Advanced Encryption Standard (AES), which should have a security strength 

equal to or better than 3DES and significantly improved efficiency. In addition 

to these general requirements, NIST specified that AES must be a symmetric 

block cipher with a block length of 128 bits and support for key lengths of 128, 

192, and 256 bits. 
 

In a first round of evaluation, 15 proposed algorithms were accepted. A second 

round narrowed the field to 5 algorithms. NIST completed its evaluation 

process and published a final standard (FIPS PUB 197) in November of 2001. 

NIST selected Rijndael as the proposed AES algorithm. The two researchers 

who developed and submitted Rijndael for the AES are both cryptographers 

from Belgium: Dr. Joan Daemen and Dr. Vincent Rijmen. 
 

Ultimately, AES is intended to replace 3DES, but this process will take a 

number of years. NIST anticipates that 3DES will remain an approved 

algorithm (for U.S. government use) for the foreseeable future. 
 

AES Evaluation 
 

It is worth examining the criteria used by NIST to evaluate potential 

candidates. These criteria span the range of concerns for the practical 

application of modern symmetric block ciphers. In fact, two set of criteria 

evolved. When NIST issued its original request for candidate algorithm 

nominations in 1997 , the request stated that candidate algorithms would be 

compared based on the factors shown in  Table 5.1 (ranked in descending 

order  of  relative  importance).  The  three  categories  of  criteria  were  as 

follows: 
 

• Security:  This  refers  to  the  effort  required  to  cryptanalyze  an 

algorithm. The emphasis in the evaluation was on the practicality of 

the attack. Because the minimum key size for AES is 128 bits, brute- 

force attacks with current and projected technology were considered 

impractical. Therefore, the emphasis, with respect to this point, is 

cryptanalysis other than a brute-force attack. 
 

Cost:  NIST  intends  AES  to  be  practical  in  a  wide  range  of 

applications.   Accordingly,   AES   must   have   high   computational



 

 
 

efficiency,  so  as  to  be  usable  in  high-speed  applications,  such  as 

broadband links. 
 

• Algorithm and implementation characteristics: This category includes 

a  variety  of  considerations,  including  flexibility;  suitability  for  a 

variety of hardware and software implementations; and simplicity, 

which will make an analysis of security more straightforward. 
 

Table 5.1. NIST Evaluation Criteria for AES (September 12, 1997) 
 

SECURITY 

• Actual security: compared to other submitted algorithms (at the same key and 

block size). 

• Randomness: the extent to which the algorithm output is indistinguishable from a 

random permutation on the input block. 

•   Soundness: of the mathematical basis for the algorithm's security. 

• Other security factors: raised by the public during the evaluation process, 

including any attacks which demonstrate that the actual security of the algorithm 

is less than the strength claimed by the submitter. 

COST 
 

• Licensing requirements: NIST intends that when the AES is issued, the 

algorithm(s) specified in the AES shall be available on a worldwide, non- 

exclusive, royalty-free basis. 

• Computational efficiency: The evaluation of computational efficiency will be 

applicable to both hardware and software implementations. Round 1 analysis by 

NIST will focus primarily on software implementations and specifically on one 

key-block size combination (128-128); more attention will be paid to hardware 

implementations and other supported key-block size combinations during Round 

2 analysis. Computational efficiency essentially refers to the speed of the 

algorithm. Public comments on each algorithm's efficiency (particularly for 

various platforms and applications) will also be taken into consideration by NIST. 

• Memory requirements: The memory required to implement a candidate 

algorithmfor both hardware and software implementations of the algorithmwill 

also be considered during the evaluation process. Round 1 analysis by NIST will 

focus primarily on software implementations; more attention will be paid to 

hardware implementations during Round 2. Memory requirements will include 

such factors as gate counts for hardware implementations, and code size and 

RAM requirements for software implementations. 

ALGORITHM AND IMPLEMENTATION CHARACTERISTICS 
 

•   Flexibility: Candidate algorithms with greater flexibility will meet the needs of 



 
 
 

Table 5.1. NIST Evaluation Criteria for AES (September 12, 1997) 

SECURITY 

more users than less flexible ones, and therefore, inter alia, are preferable. 

However, some extremes of functionality are of little practical application (e.g., 

extremely short key lengths); for those cases, preference will not be given. Some 

examples of flexibility may include (but are not limited to) the following: 

a.   The algorithm can accommodate additional key- and block-sizes (e.g., 64- 

bit block sizes, key sizes other than those specified in the Minimum 

Acceptability Requirements section, [e.g., keys between 128 and 256 that 

are multiples of 32 bits, etc.]) 

b.   The algorithm can be implemented securely and efficiently in a wide 

variety of platforms and applications (e.g., 8-bit processors, ATM 

networks, voice & satellite communications, HDTV, B-ISDN, etc.). 

c.   The algorithm can be implemented as a stream cipher, message 

authentication code (MAC) generator, pseudorandom number generator, 

hashing algorithm, etc. 
• Hardware and software suitability: A candidate algorithm shall not be restrictive 

in the sense that it can only be implemented in hardware. If one can also 

implement the algorithm efficiently in firmware, then this will be an advantage in 

the area of flexibility. 

•   Simplicity: A candidate algorithm shall be judged according to relative simplicity 

of design. 
 

 
 
 
 

Using these criteria, the initial field of 21 candidate algorithms was reduced 

first to 15 candidates and then to 5 candidates. By the time that a final 

evaluation  had  been  done  the  evaluation  criteria,  as  described  in  ,  had 

evolved. The following criteria were used in the final evaluation: 
 

• General security: To assess general security, NIST relied on the public 

security analysis conducted by the cryptographic community. During 

the course  of  the  three-year  evaluation  process,  a  number  of 

cryptographers published their analyses of the strengths and weaknesses 

of the various candidates. There was particular emphasis on analyzing 

the candidates with respect to known attacks, such as differential  and  

linear  cryptanalysis.  However,  compared  to  the analysis of   DES,   

the   amount   of   time   and   the   number   of cryptographers devoted 

to analyzing Rijndael are quite limited. Now that a single AES cipher 

has been chosen, we can expect to see a more extensive security analysis 

by the cryptographic community.



 

 
 

• Software implementations: The principal concerns in this category are 

execution speed, performance across a variety of platforms, and 

variation of speed with key size. 

• Restricted-space environments: In some applications, such as smart 

cards, relatively small amounts of random-access memory (RAM) 

and/or read-only memory (ROM) are available for such purposes as code 

storage (generally in ROM); representation of data objects such as S-

boxes (which could be stored in ROM or RAM, depending on whether 

pre-computation or Boolean representation is used); and subkey storage 

(in RAM). 
• Hardware implementations: Like software, hardware implementations 

can  be  optimized  for  speed  or  for  size.  However,  in  the  case  of 
hardware, size translates much more directly into cost than is usually the  
case  for  software  implementations.  Doubling  the  size  of  an 
encryption program may make little difference on a general-purpose 
computer with a large memory, but doubling the area used in a hardware 
device typically more than doubles the cost of the device. 

• Attacks  on  implementations:  The  criterion   of  general  security, 
discussed in the first bullet, is concerned with cryptanalytic attacks 
that  exploit  mathematical  properties  of  the  algorithms.  There  is 
another class of attacks that use physical measurements conducted 
during  algorithm  execution  to  gather  information  about  quantities 
such as keys. Such attacks exploit a combination of intrinsic algorithm 
characteristics and implementation-dependent features. Examples of 

such attacks are timing attacks and power analysis. The basic idea behind 

power analysis is the observation that the power consumed by a smart 

card at any particular time during the cryptographic operation is related 

to the instruction being executed and to the data being processed. For 

example, multiplication consumes more power than addition, and 

writing 1s consumes more power than writing 0s. 
 

Encryption versus decryption: This criterion deals with several issues 

related to considerations of both encryption and decryption. If the 

encryption  and  decryption  algorithms  differ,  then  extra  space  is 

needed for the decryption. Also, whether the two algorithms are the same 

or not, there may be timing differences between encryption and 

decryption. 
 

• Key agility: Key agility refers to the ability to change keys quickly 

and  with  a  minimum  of  resources.  This  includes  both  subkey



 

 
 

computation  and  the  ability  to  switch  between  different  ongoing 

security associations when subkeys may already be available. 

• Other versatility and flexibility: indicates two areas that fall into this 

category. Parameter flexibility includes ease of support for other key and 

block sizes and ease of increasing the number of rounds in order to  

cope  with  newly  discovered  attacks.  Implementation  flexibility refers 

to the possibility of optimizing cipher elements for particular 

environments. 

• Potential for instruction-level parallelism: This criterion refers to the 

ability to exploit ILP features in current and future processors. 
 
 
 

 

Table 5.2 shows the assessment that NIST provided for Rijndael based on 

these criteria. 
 

Table 5.2. Final NIST Evaluation of Rijndael (October 2, 2000) 

General Security 

Rijndael has no known security attacks. Rijndael uses S-boxes as nonlinear components. 

Rijndael appears to have an adequate security margin, but has received some criticism 

suggesting that its mathematical structure may lead to attacks. On the other hand, the simple 

structure may have facilitated its security analysis during the timeframe of the AES 

development process. 

Software Implementations 

Rijndael performs encryption and decryption very well across a variety of platforms, 

including 8-bit and 64-bit platforms, and DSPs. However, there is a decrease in performance 

with the higher key sizes because of the increased number of rounds that are performed. 

Rijndael's high inherent parallelism facilitates the efficient use of processor resources, 

resulting in very good software performance even when implemented in a mode not 

capable of interleaving. Rijndael's key setup time is fast. 

Restricted-Space Environments 

In general, Rijndael is very well suited for restricted-space environments where either 

encryption or decryption is implemented (but not both). It has very low RAM and ROM 

requirements. A drawback is that ROM requirements will increase if both encryption and 

decryption are implemented simultaneously, although it appears to remain suitable for 

these environments. The key schedule for decryption is separate from encryption. 

Hardware Implementations 

Rijndael has the highest throughput of any of the finalists for feedback modes and second 



 

 
 

Table 5.2. Final NIST Evaluation of Rijndael (October 2, 2000) 

General Security 

highest for non-feedback modes. For the 192 and 256-bit key sizes, throughput falls in 

standard and unrolled implementations because of the additional number of rounds. For 

fully pipelined implementations, the area requirement increases, but the throughput is 

unaffected. 

Attacks on Implementations 

The operations used by Rijndael are among the easiest to defend against power and 

timing attacks. The use of masking techniques to provide Rijndael with some defense 

against these attacks does not cause significant performance degradation relative to the other 

finalists, and its RAM requirement remains reasonable. Rijndael appears to gain a major 

speed advantage over its competitors when such protections are considered. 

Encryption vs. Decryption 

The encryption and decryption functions in Rijndael differ. One FPGA study reports that 

the implementation of both encryption and decryption takes about 60% more space than 

the implementation  of encryption  alone.  Rijndael's  speed  does not vary  significantly 

between encryption and decryption, although the key setup performance is slower for 

decryption than for encryption. 

Key Agility 

Rijndael supports on-the-fly subkey computation for encryption. Rijndael requires a one- 

time execution of the key schedule to generate all subkeys prior to the first decryption 

with a specific key. This places a slight resource burden on the key agility of Rijndael. 

Other Versatility and Flexibility 

Rijndael fully supports block sizes and key sizes of 128 bits, 192 bits and 256 bits, in any 

combination. In principle, the Rijndael structure can accommodate any block sizes and 

key sizes that are multiples of 32, as well as changes in the number of rounds that are 

specified. 

Potential for Instruction-Level Parallelism 

Rijndael has an excellent potential for parallelism for a single block encryption. 

  



Simplified AES 
 

Simplified AES (S-AES) was developed by Professor Edward Schaefer of 

Santa Clara University and several of his students . It is an educational rather 

than a secure encryption algorithm. It has similar properties and structure to 

AES with much smaller parameters. The reader might find it useful to work 

through an example by hand while following the discussion in this appendix. 

A good grasp of S-AES will make it easier for the student to appreciate the 

structure and workings of AES. 
 

Overview 
 

Figure 5.8 illustrates the overall structure of S-AES. The encryption 

algorithm takes a 16-bit block of plaintext as input and a 16-bit key and 

produces a 16-bit block of ciphertext as output. The S-AES decryption 

algorithm takes an 16-bit block of ciphertext and the same 16-bit key used to 

produce that ciphertext as input and produces the original 16-bit block of 

plaintext as output. 
 

Figure 5.8. S-AES Encryption and Decryption 
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The encryption algorithm involves the use of four different functions, or 
transformations: add key (AK) nibble substitution (NS), shift row (SR), and 
mix column (MC), whose operation is explained subsequently. 

 

We can concisely express the encryption algorithm as a composition of 

functions: 
 

Definition: If f and g are two functions, then the function F with the equation 

y= F(x) = g[f(x)] is called the composition of f and g and is denoted as F = g 
º f. 

 

AK2 º SR º NS º AK1 º MC º SR º NS º AK0 

 

so that AK0 is applied first. 
 

The encryption algorithm is organized into three rounds. Round 0 is simply 

an add key round; round 1 is a full round of four functions; and round 2 

contains only 3 functions. Each round includes the add key function, which 

makes use of 16 bits of key. The initial 16-bit key is expanded to 48 bits, so 

that each round uses a distinct 16-bit round key.



 

 
 

Each function operates on a 16-bit state, treated as a 2 x 2 matrix of nibbles, 

where one nibble equals 4 bits. The initial value of the state matrix is the 16- 

bit plaintext; the state matrix is modified by each subsequent function in the 

encryption process, producing after the last function the 16-bit ciphertext. As 

Figure 5.9a shows, the ordering of nibbles within the matrix is by column. 

So, for example, the first eight bits of a 16-bit plaintext input to the 

encryption cipher occupy the first column of the matrix, and the second eight 

bits occupy the second column. The 16-bit key is similarly organized, but it 

is somewhat more convenient to view the key as two bytes rather than four 
nibbles (Figure 5.9b). The expanded key of 48 bits is treated as three round 
keys, whose bits are labeled as follows: K0 = k0...k15; K1 = k16...k31; K2 = 

k32...k47. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.9. S-AES Data Structures 

 

 
 

Figure 5.10 shows the essential elements of a full round of S-AES. 
 

Figure 5.10. S-AES Encryption Round 

 
(This item is displayed on page 167 in the print version)



 
 
 

 

 
 

 
 

Decryption is also shown in Figure 5.8 and is essentially the reverse of 

encryption: 
 

AK0 º INS º ISR º IMC º AK1 º INS º ISR º AK2 

 

in which three of the functions have a corresponding inverse function: 

inverse nibble substitution (INS), inverse shift row (ISR), and inverse mix 

column (IMC). 
 

S-AES Encryption and Decryption 
 

We now look at the individual functions that are part of the encryption 

algorithm. 
 

Add Key 
 

The add key function consists of the bitwise XOR of the 16-bit state matrix 

and the 16-bit round key. Figure 5.11 depicts this as a columnwise operation, 

but it can also be viewed as a nibble-wise or bitwise operation. The 
following is an example: 

 

 
 

Figure 5.11. S-AES Transformations 
 

[View full size image]



 

 
 

 
 

 
 

The inverse of the add key function is identical to the add key function, 

because the XOR operation is its own inverse. 
 
 
 

 

Nibble Substitution 
 

The nibble substitution function is a simple table lookup (Figure 5.11). AES 

defines a 4 x 4 matrix of nibble values, called an S-box (Table 5.5a), that 

contains a permutation of all possible 4-bit values. Each individual nibble of 

the state matrix is mapped into a new nibble in the following way: The 

leftmost 2 bits of the nibble are used as a row value and the rightmost 2 bits 

are used as a column value. These row and column values serve as indexes 

into the S-box to select a unique 4-bit output value. For example, the



 

 
 

hexadecimal value A references row 2, column 2 of the S-box, which 

contains the value 0. Accordingly, the value A is mapped into the value 0. 
 

Table 5.5. S-AES S-Boxes 

 

Note: Hexadecimal numbers in shaded boxes; binary numbers in unshaded boxes. 
 

 
 
 
 

Here is an example of the nibble substitution transformation: 
 

 
 

The inverse nibble substitution function makes use of the inverse S-box 

shown in Table 5.5b. Note, for example, that the input 0 produces the output 

A, and the input A to the S-box produces 0. 
 

Shift Row 
 

The shift row function performs a one-nibble circular shift of the second row 

of the state matrix; the first row is not altered (Figure 5.11). The following is 

an example: 
 

 
 

The inverse shift row function is identical to the shift row function, because 

it shifts the second row back to its original position. 
 

Mix Column 
 

The mix column function operates on each column individually. Each nibble 

of a column is mapped into a new value that is a function of both nibbles in



 

 
 

that column. The transformation can be defined by the following matrix 

multiplication on the state matrix (Figure 5.11): 
 

 
 
 

Performing the matrix multiplication, we get: 

S'0,0 = S0,0 ⊕ (4 · S1,0) 

 

S'1,0 = (4 · S0,0) ⊕S1,0 

S'0,1 = S0,1 ⊕ (4 · S1,1) 

S'1,1 = (4 · S0,1) ⊕S1,1 

 

Where arithmetic is performed in GF(2
4
), and the symbol · refers to 

multiplication in GF(2
4
). Appendix E provides the addition and 

multiplication tables. The following is an example: 
 

 
 

The inverse mix column function is defined as follows: 
 

 
 

We demonstrate that we have indeed defined the inverse in the following 

fashion: 
 

 
 

The preceding matrix multiplication makes use of the following results in 

GF(2
4
): 9 + (2 · 4) = 9 + 8 = 1; (9 · 4) + 2 = 2 + 2 = 0. These operations can 

be verified using the arithmetic tables in Appendix E or by polynomial 
arithmetic.



 

 
 

The mix column function is the most difficult to visualize. Accordingly, we 

provide an additional perspective on it in Appendix E. 
 

Key Expansion 
 

For key expansion, the 16 bits of the initial key are grouped into a row of 

two 8-bit words.  Figure 5.12 shows the expansion into 6 words, by the 

calculation of 4 new words from the initial 2 words. The algorithm is as 

follows: 
 

 

w2 = w0 ⊕g(w1) = w0 ⊕RCON(1) ⊕SubNib(RotNib(w1)) 

 

w3 = w2 ⊕ w1 

 

w4 = w2 ⊕ g(w3) = w2 ⊕RCON(2) ⊕SubNib(RotNib(w3)) 

 

w5 = w4 ⊕w3 

 
 
 
 
 

 
Figure 5.12. S-AES Key Expansion 
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RCON is a round constant, defined as follows: RC[i] = x
i + 2

, so that RC[1] = 

x
3 

= 1000 and RC[2] = x
4 

mod (x
4 

+ x + 1) = x + 1 = 0011. RC[i] forms the 
leftmost nibble of a byte, with the rightmost nibble being all zeros. Thus, 
RCON(1) = 10000000 and RCON(2) = 00110000. 

 

For example, suppose the key is 2D55 = 0010 1101 0101 0101 = w0w1. Then 

w2 = 00101101 ⊕10000000 ⊕SubNib(01010101) 

= 00101101 ⊕10000000 ⊕00010001 = 10111100 
 

w3 = 10111100 ⊕01010101 = 11101001



 
 
 

w4 = 10111110 ⊕00110000 ⊕SubNib(10011110) 
 

= 10111100 ⊕00110000 ⊕00101111 = 10100011 

w5 = 10100011 ⊕11101001 = 01001010 

The S-Box 
 

The S-box is constructed as follows: 
 

Initialize the S-box with the nibble values in ascending sequence row 

by row. The first row contains the hexadecimal values 0, 1, 2, 3; the 

second row contains 4, 5, 6, 7; and so on. Thus, the value of the nibble 

at row i, column j is 4i + j. 
 

1.  Treat each nibble as an element of the finite field GF(2
4
) modulo x

4
 

+x + 1. Each nibble a0a1a2a3 represents a polynomial of degree 3. 

2.  Map each byte in the S-box to its multiplicative inverse in the finite 

field GF(2
4
) modulo x

4 
+ x + 1; the value 0 is mapped to itself. 

3.  Consider that each byte in the S-box consists of 4 bits labeled (b0, b1, 
b2, b3). Apply the following transformation to each bit of each byte in 
the S-box: The AES standard depicts this transformation in matrix 
form as follows: 

 

 
 
 
 

 

The prime (') indicates that the variable is to be updated by the value 

on the right. Remember that addition and multiplication are being 

calculated modulo 2. 
 
 
 

 

Table 5.5a shows the resulting S-box. This is a nonlinear, invertible matrix. 

The inverse S-box is shown in Table 5.5b.



 

 
 

S-AES Structure 
 

We can now examine several aspects of interest concerning the structure of 

AES. First, note that the encryption and decryption algorithms begin and end 

with the add key function. Any other function, at the beginning or end, is 

easily reversible without knowledge of the key and so would add no security 

but just a processing overhead. Thus, there is a round 0 consisting of only 

the add key function. 
 

The second point to note is that round 2 does not include the mix column 

function. The explanation for this in fact relates to a third observation, which 

is that although the decryption algorithm is the reverse of the encryption 

algorithm, as clearly seen in Figure 5.8, it does not follow the same sequence 

of functions. Thus 
 

Encryption: AK2 º SR º NS º AK1 º MC º SR º NS º AK0 

 

Decryption: AK0 º INS º ISR º IMC º AK1 º INS º ISR º AK2 

 

From an implementation point of view, it would be desirable to have the 

decryption function follow the same function sequence as encryption. This 

allows the decryption algorithm to be implemented in the same way as the 

encryption algorithm, creating opportunities for efficiency. 
 

Note that if we were able to interchange the second and third functions, the 

fourth and fifth functions, and the sixth and seventh functions in the 

decryption sequence, we would have the same structure as the encryption 

algorithm. Let's see if this is possible. First, consider the interchange of INS 

and ISR. Given a state N consisting of the nibbles (N0, N1, N2, N3) the 

transformation INS(ISR(N)) proceeds as follows: 
 

 
 
 
 

 

Where IS refers to the inverse S-Box. Reversing the operations, the 

transformation ISR(INS(N) proceeds as follows:



 

 
 

 
 
 
 
 

which is the same result. Thus, INS(ISR(N)) = ISR(INS(N)). 
 
Now consider the operation of inverse mix column followed by add key: 
IMC(AK1(N)) where the round key K1 consists of the nibbles (k0,0, k1,0, k0,1, 

k1,1) Then: 
 

 
 
 

 

All of the above steps make use of the properties of finite field arithmetic. 

The result is that IMC(AK1(N)) = IMC(K1 ⊕ IMC(N). Now let us define the 
inverse round key for round 1 to be IMC(K1) and the inverse add key 
operation IAK1 to be the bitwise XOR of the inverse round key with the state 
vector. Then we have IMC(AK1(N)) = IAK1(IMC(N)). As a result, we can 
write the following: 

 

Encryption: AK2 º SR º NS º AK1 º MC º SR º NS º AK0 

 

Decryption: AK0 º INS º ISR º IMC º AK1 º INS º ISR º AK2 

 

Decryption: AK0 º ISR º INS º AIMC(K1) º IMC º ISR º INS º AK2 

 

Both encryption and decryption now follow the same sequence. Note that 

this derivation would not work as effectively if round 2 of the encryption 

algorithm included the MC function. In that case, we would have



 

 
 

Encryption: AK2 º MC º SR º NS º AK1 º MC º SR º NS º AK0 

 

Decryption: AK0 º INS º ISR º IMC º AK1 º INS º ISR º IMC º AK2 

 

There is now no way to interchange pairs of operations in the decryption 

algorithm so as to achieve the same structure as the encryption algorithm. 
 
 
 
 
 
 
 
 
 

The AES 

Cipher 
 

The Rijndael proposal for AES defined a cipher in which the block length 

and the key length can be independently specified to be 128, 192, or 256 

bits. The AES specification uses the same three key size alternatives but 

limits the block length to 128 bits. A number of AES parameters depend on the 

key length (Table 5.3). In the description of this section, we assume a key 

length of 128 bits, which is likely to be the one most commonly implemented. 
 

Table 5.3. AES Parameters 

Key size (words/bytes/bits) 4/16/128 6/24/192 8/32/256 

Plaintext block size (words/bytes/bits) 4/16/128 4/16/128 4/16/128 

Number of rounds 10 12 14 

Round key size (words/bytes/bits) 4/16/128 4/16/128 4/16/128 

Expanded key size (words/bytes) 44/176 52/208 60/240 
 

 
 

Rijndael was designed to have the following characteristics: 
 

•   Resistance against all known attacks 

•   Speed and code compactness on a wide range of platforms 

•   Design simplicity 
 

Figure 5.1 shows the overall structure of AES. The input to the encryption 

and decryption algorithms is a single 128-bit block. In FIPS PUB 197, this 

block is depicted as a square matrix of bytes. This block is copied into the



 

 
 

State array, which is modified at each stage of encryption or decryption. 

After the final stage, State is copied to an output matrix. These operations 

are depicted in  Figure 5.2a. Similarly, the 128-bit key is depicted as a square 

matrix of bytes. This key is then expanded into an array of key schedule words; 

each word is four bytes and the total key schedule is 44 words for the 

128-bit key (Figure 5.2b). Note that the ordering of bytes within a matrix is 

by column. So, for example, the first four bytes of a 128-bit plaintext input 

to the encryption cipher occupy the first column of the in matrix, the second 

four bytes occupy the second column, and so on. Similarly, the first four 

bytes of the expanded key, which form a word, occupy the first column of 

the w matrix. 
 

Figure 5.1. AES Encryption and Decryption



 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 5.2. AES Data Structures



 

 
 

 
 

Before delving into details, we can make several comments about the overall 

AES structure: 
 

1.  One noteworthy feature of this structure is that it is not a Feistel 

structure. Recall that in the classic Feistel structure, half of the data 

block is used to modify the other half of the data block, and then the 

halves are swapped. Two of the AES finalists, including Rijndael, do 

not use a Feistel structure but process the entire data block in parallel 

during each round using substitutions and permutation. 

2.  The key that is provided as input is expanded into an array of forty- 

four 32-bit words, w[i]. Four distinct words (128 bits) serve as a round 

key for each round; these are indicated in  Figure 5.1. 

3. Four different stages are used, one of permutation and three of 

substitution: 
o  Substitute  bytes:  Uses  an  S-box  to  perform  a  byte-by-byte 

substitution of the block 

o  ShiftRows: A simple permutation 
o  MixColumns: A substitution that makes use of arithmetic over 

GF(2
8
) 

o  AddRoundKey: A simple bitwise XOR of the current block 

with a portion of the expanded key 

4.  The structure is quite simple. For both encryption and decryption, the 

cipher begins with an AddRoundKey stage, followed by nine rounds 

that each includes all four stages, followed by a tenth round of three 

stages.  Figure 5.3 depicts the structure of a full encryption round. 
 
 
 

 
Figure 5.3. AES Encryption Round



 

 
 

(This item is displayed on page 144 in the print version) 

 

 
 

5.  Only the AddRoundKey stage makes use of the key. For this reason, 

the cipher begins and ends with an AddRoundKey stage. Any other 

stage, applied at the beginning or end, is reversible without knowledge 

of the key and so would add no security. 

6.  The AddRoundKey stage is, in effect, a form of Vernam cipher and by 

itself would not be formidable. The other three stages together provide 

confusion,  diffusion,  and  nonlinearity,  but  by  themselves  would 

provide no security because they do not use the key. We can view the 

cipher as alternating operations of XOR encryption (AddRoundKey) 

of  a  block,  followed  by  scrambling  of  the  block  (the  other  three 

stages), followed by XOR encryption, and so on. This scheme is both 

efficient and highly secure. 
7.  Each stage is easily reversible. For the Substitute Byte, ShiftRows, 

and MixColumns stages, an inverse function is used in the decryption 
algorithm. For the AddRoundKey stage, the inverse is achieved by 

XORing the same round key to the block, using the result that A ⊕A 

⊕B = B.



 

 
 

8.  As with most block ciphers, the decryption algorithm makes use of the 

expanded key in reverse order. However, the decryption algorithm is not 

identical to the encryption algorithm. This is a consequence of the 

particular structure of AES. 
 

Once it is established that all four stages are reversible, it is easy to verify 

that decryption does recover the plaintext.  Figure 5.1 lays out 

encryption and decryption going in opposite vertical directions. At 

each horizontal point (e.g., the dashed line in the figure), State is the 

same for both encryption and decryption. 
 

9.  The final round of both encryption and decryption consists of only 

three stages. Again, this is a consequence of the particular structure of 

AES and is required to make the cipher reversible. 
 

We now turn to a discussion of each of the four stages used in AES. For 

each stage, we describe the forward (encryption) algorithm, the inverse 

(decryption) algorithm, and the rationale for the stage. This is followed by a 

discussion of key expansion. 
 

AES  uses  arithmetic  in  the  finite  field  GF(2
8
),  with  the  irreducible 

polynomial  m(x) = x
8 

+ x
4 

+ x
3 

+ x + 1. The developers of Rijndael give as 
their motivation for selecting this one of the 30 possible irreducible 
polynomials of degree 8 that it is the first one on the list . 

 

Substitute Bytes Transformation 
 

Forward and Inverse Transformations 
 

The forward substitute byte transformation, called SubBytes, is a simple 

table lookup (Figure 5.4a). AES defines a 16 x 16 matrix of byte values, called 

an S-box (Table 5.4a), that contains a permutation of all possible 256 

8-bit values. Each individual byte of State is mapped into a new byte in the 

following way: The leftmost 4 bits of the byte are used as a row value and 

the rightmost 4 bits are used as a column value. These row and column 

values serve as indexes into the S-box to select a unique 8-bit output value. For 

example, the hexadecimal value {95} references row 9, column 5 of the S-

box,  which  contains  the  value  {2A}.  Accordingly,  the  value  {95}  is 

mapped into the value {2A}.



 

 
 

In FIPS PUB 197, a hexadecimal number is indicated by enclosing it in 

curly brackets. We use that convention in this chapter. 
 

Figure 5.4. AES Byte-Level Operations 
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Table 5.4. AES S-Boxes 

 
(This item is displayed on page 146 in the print version) 

 



 

 
 

Here is an example of the SubBytes transformation: 
 

 
 

The S-box is constructed in the following fashion: 
 

1.  Initialize the S-box with the byte values in ascending sequence row by 

row. The first row contains {00}, {01}, {02},.... {0F}; the second row 

contains {10}, {11}, etc.; and so on. Thus, the value of the byte at row 

x, column y is {xy}. 
2.  Map each byte in the S-box to its multiplicative inverse in the finite 

field GF(2
8
); the value {00} is mapped to itself. 

3.  Consider that each byte in the S-box consists of 8 bits labeled (b7, b6, 
b5, b4, b3, b2, b1, b0). Apply the following transformation to each bit of 
each byte in the S-box: 

 

Equation 5-1 
 

 
 
 
 

 

where ci is the ith bit of byte c with the value {63}; that is, 

(c7c6c5c4c3c2c1c0)  =  (01100011).  The  prime  (')  indicates  that  the 

variable is to be updated by the value on the right. The AES standard 
depicts this transformation in matrix form as follows: 

 

Equation 5-2 
 



 

 
 

Equation (5.2) has to be interpreted carefully. In ordinary matrix 
multiplication,

[5]  
each element in the product matrix is the sum of products 

of the elements or one row and one column. In this case, each element in the 
product matrix is the bitwise XOR of products of elements of one row and 
one column. Further, the final addition shown in  Equation (5.2) is a bitwise 
XOR. 

 

As an example, consider the input value {95}. The multiplicative inverse in 

GF(2
8
) is {95}

1 
= {8A}, which is 10001010 in binary. Using Equation (5.2), 

 

 
 
 
 

 

The result is {2A}, which should appear in row {09} column {05} of the S- 

box. This is verified by checking  Table 5.4a. 
 

The inverse substitute byte transformation, called InvSubBytes, makes use 

of the inverse S-box shown in  Table 5.4b. Note, for example, that the input 

{2A} produces the output {95} and the input {95} to the S-box produces 

{2A}. The inverse S-box is constructed by applying the inverse of the 
transformation  in   Equation  (5.1)  followed  by  taking  the  multiplicative 

inverse in GF(2
8
). The inverse transformation is: 

 

 

bi' = b(i + 2) mod 8 ⊕b(i + 5) mod 8 ⊕b(i + 7) mod 8  ⊕di



 

 
 

where byte d = {05}, or 00000101. We can depict this transformation as 

follows: 
 

 
 
 
 

To see that InvSubBytes is the inverse of SubBytes, label the matrices in 

SubBytes and InvSubBytes as X and Y, respectively, and the vector versions 

of constants c and d as C and D, respectively. For some 8-bit vector B, 

Equation (5.2) becomes B' = XB ⊕C. We need to show that Y(XB ⊕C) ⊕D 

= B. Multiply out, we must show YXB ⊕YC ⊕D = B. This becomes 
 



 
 
 
 

 

We have demonstrated that YX equals the identity matrix, and the YC = D, 

so that YC ⊕D equals the null vector. 
 

Rationale 
 

The S-box is designed to be resistant to known cryptanalytic attacks. 

Specifically, the Rijndael developers sought a design that has a low correlation 

between input bits and output bits, and the property that the output cannot 

be described as a simple mathematical function of the input . In addition, the 

constant in  Equation (5.1) was chosen so that the S-box has no fixed points 

[S-box(a) = a] and no "opposite fixed points" [S-box(a) = ā], where ā is the 

bitwise complement of a. 
 

Of course, the S-box must be invertible, that is, IS-box[S-box(a)] = a. However, 

the S-box is not self-inverse in the sense that it is not true that S- box(a) = IS-

box(a). For example, [S-box({95}) = {2A}, but IS-box({95}) = 

{AD}. 
 

ShiftRows Transformation 
 

Forward and Inverse Transformations 
 

The  forward  shift  row  transformation,  called  ShiftRows,  is  depicted  in 

Figure 5.5a. The first row of State is not altered. For the second row, a 1- 

byte circular left shift is performed. For the third row, a 2-byte circular left 

shift  is  performed.  For  the  fourth  row,  a  3-byte  circular  left  shift  is 

performed. The following is an example of ShiftRows: 
 



 

 
 

Figure 5.5. AES Row and Column Operations 

 

 
 
 
 

 
The inverse shift  row transformation, called InvShiftRows, performs the 

circular shifts in the opposite direction for each of the last three rows, with a 

one-byte circular right shift for the second row, and so on. 
 

Rationale 
 

The shift row transformation is more substantial than it may first appear. 

This is because the State, as well as the cipher input and output, is treated as 

an array of four 4-byte columns. Thus, on encryption, the first 4 bytes of the 

plaintext are copied to the first column of State, and so on. Further, as will 

be seen, the round key is applied to State column by column. Thus, a row 

shift moves an individual byte from one column to another, which is a linear 

distance of a multiple of 4 bytes. Also note that the transformation ensures



 

 
 

that the 4 bytes of one column are spread out to four different columns. 

Figure 5.3 illustrates the effect. 
 

MixColumns Transformation 
 

Forward and Inverse Transformations 
 

The forward mix column transformation, called MixColumns, operates on 

each column individually. Each byte of a column is mapped into a new value 

that is a function of all four bytes in that column. The transformation can be 

defined by the following matrix multiplication on State (Figure 5.5b): 
 

Equation 5-3 
 

 
 
 
 

 

Each element in the product matrix is the sum of products of elements of one 
row   and   one   column.   In   this   case,   the   individual   additions   and 
multiplications are performed in GF(2

8
). The MixColumns transformation 

on a single column j(0 ≤j ≤3) of State can be expressed as 
 

We follow the convention of FIPS PUB 197 and use the symbol · to indicate 

multiplication over the finite field GF(2
8
) and ⊕to indicate bitwise XOR, 

which corresponds to addition in GF(28). 
 

Equation 5-4 
 



 

 
 

The following is an example of MixColumns: 
 

 
 

Let us verify the first column of this example, in GF(2
8
), addition is the bitwise 

XOR operation and that multiplication can be performed according to the 

rule established in  Equation (4.10). In particular, multiplication of a value 

by x (i.e., by {02}) can be implemented as a 1-bit left shift followed by a 

conditional bitwise XOR with (0001 1011) if the leftmost bit of the original 

value (prior to the shift) is 1. Thus, to verify the MixColumns transformation 

on the first column, we need to show that 
 

 

({02} · {87})  ⊕ ({03} · {6E})  ⊕{46}                 ⊕{A6}                 = {47} 

{87}                ⊕ ({02} · {6E})  ⊕ ({03} · {46})  ⊕{A6}                 = {37} 

{87}  ⊕{6E}                  ⊕ ({02} · {46}  ⊕ ({03} · {A6})  = {94} 

({03} · {87})  ⊕{6E}                 ⊕{46}                 ⊕ ({02} · {A6}   = {ED} 

 

For the first equation, we have {02} · {87} = (0000 1110) ⊕ (0001 1011) = 

(0001 0101); and {03} ·  {6E} = {6E} ⊕ ({02} ·  {6E}) = (0110 1110) ⊕ 

(1101 1100) = (1011 0010). Then 
 

{02} · {87} = 0001 0101 

{03} · {6E} = 1011 0010 

{46} = 0100 0110 

{A6} = 1010 0110 

  0100 0111 = {47} 
 

 
 

The other equations can be similarly verified. 
 

The inverse mix column transformation, called InvMixColumns, is defined 

by the following matrix multiplication:



 

 
 

Equation 5-5 
 

 
 
 
 

 

It is not immediately clear that  Equation (5.5) is the inverse of  Equation 

(5.3). We need to show that: 
 

 
 
 
 

 

which is equivalent to showing that: 

Equation 5-6 

 
 

That is, the inverse transformation matrix times the forward transformation 

matrix equals the identity matrix. To verify the first column of  Equation 

(5.6), we need to show that: 
 

 

({0E} · {02}) ⊕{0B} ⊕{0D} ⊕ ({09} · {03}) = {01} 

({09} · {02}) ⊕{0E} ⊕{0B} ⊕ ({0D} · {03}) = {00} 

({0D} · {02}) ⊕{09} ⊕{0E} ⊕ ({0B} · {03}) = {00} 

({0B} · {02}) ⊕{0D} ⊕{09} ⊕ ({0E} · {03}) = {00}



 
 
 

For the first equation, we have {0E} · {02}) ⊕00011100; and {09} · {03} = 

{09} ⊕ ({09} · {02}) = 00001001 ⊕00010010 = 00011011. Then 
 
 
 

 

{0E} · {02} = 00011100 

{0B} = 00001011 

{0D} = 00001101 

{09} · {03} = 00011011 

  00000001 
 

 
 

The other equations can be similarly verified. 
 
The   AES   document   describes   another   way   of   characterizing   the 
MixColumns transformation, which is in terms of polynomial arithmetic. In the 
standard, MixColumns is defined by considering each column of State to be a 

four-term polynomial with coefficients in GF(2
8
). Each column is multiplied 

modulo (x
4 

+ 1) by the fixed polynomial a(x), given by 
 

Equation 5-7 
 

 
 
 
 

 

demonstrates that multiplication of each column of State by a(x) can be written 

as the matrix multiplication of  Equation (5.3). Similarly, it can be seen that 

the transformation in  Equation (5.5) corresponds to treating each column as 

a four-term polynomial and multiplying each column by b(x), given by 
 

Equation 5-8 
 



 

 

It can readily be shown that b(x) = a
1 

(x) mod (x
4 

+ 1). 
 

Rationale 
 

The coefficients of the matrix in  Equation (5.3) are based on a linear code 

with maximal distance between code words, which ensures a good mixing 

among the bytes of each column. The mix column transformation combined 

with the shift row transformation ensures that after a few rounds, all output bits 

depend on all input bits. 
 

In addition, the choice of coefficients in MixColumns, which are all {01}, 

{02}, or {03}, was influenced by implementation considerations. As was 

discussed, multiplication by these coefficients involves at most a shift and an 

XOR.   The   coefficients   in   InvMixColumns   are   more   formidable   to 

implement.   However,   encryption   was   deemed   more   important   than 

decryption for two reasons: 
 

1.  For the CFB and OFB cipher modes only encryption is used. 

2.  As with any block cipher, AES can be used to construct a message 

authentication code (Part Two), and for this only encryption is used. 
 

AddRoundKey Transformation 
 

Forward and Inverse Transformations 
 

In the forward add round key transformation, called AddRoundKey, the 128 

bits of State are bitwise XORed with the 128 bits of the round key. As 

shown in  Figure 5.4b, the operation is viewed as a columnwise operation 

between the 4 bytes of a State column and one word of the round key; it can 

also be viewed as a byte-level operation. The following is an example of 

AddRoundKey: 
 



 

 
 

The first matrix is State, and the second matrix is the round key. 
 

The inverse add round key transformation is identical to the forward add round 

key transformation, because the XOR operation is its own inverse. 
 

Rationale 
 

The add round key transformation is as simple as possible and affects every bit 

of State. The complexity of the round key expansion, plus the complexity of 

the other stages of AES, ensure security. 
 

AES Key Expansion 
 

Key Expansion Algorithm 
 

The AES key expansion algorithm takes as input a 4-word (16-byte) key and 

produces a linear array of 44 words (176 bytes). This is sufficient to provide 

a 4-word round key for the initial AddRoundKey stage and each of the 10 

rounds of the cipher. The following pseudocode describes the expansion: 
 
 

KeyExpansion (byte key[16], word w[44]) 

{ 

word temp 

for (i = 0; i < 4; i++) w[i] = (key[4*i], 

key[4*i+1], 

key[4*i+2], 

key[4*i+3]); 

for (i = 4; i < 44; i++) 

{ 

temp = w[i  1]; 

if (i mod 4 = 0) temp = SubWord (RotWord (temp)) 

⊕ Rcon[i/4]; 
w[i] = w[i4] ≈temp 

} 

} 
 
 

 

The key is copied into the first four words of the expanded key. The 

remainder of the expanded key is filled in four words at a time. Each 

added word w[i] depends on the immediately preceding word, w[i 1], 

and the word four positions back,w[i 4]. In three out of four cases, a 

simple XOR is used. For a word whose position in the w array is a



 

 
 

multiple of 4, a more complex function is used.  Figure 5.6 illustrates 

the generation of the first eight words of the expanded key, using the 

symbol g to represent that complex function. The function g consists 

of the following subfunctions: 
 

1.  RotWord performs a one-byte circular left shift on a word. This means 

that an input word [b0, b1, b2, b3] is transformed into [b1, b2, b3, b0]. 
2.  SubWord performs a byte substitution on each byte of its input word, 

using the S-box (Table 5.4a). 

3.  The result of steps 1 and 2 is XORed with a round constant, Rcon[j]. 
 

Figure 5.6. AES Key Expansion 

 

 
 
 
 
 

The round constant is a word in which the three rightmost bytes are always 

0. Thus the effect of an XOR of a word with Rcon is to only perform an 

XOR on the leftmost byte of the word. The round constant is different for 

each round and is defined as Rcon[j] = (RC[j], 0, 0, 0), with RC[1] = 1,



 

 

RC[j] = 2 · RC[j - 1] and with multiplication defined over the field GF(2
8
). 

The values of RC[j] in hexadecimal are 
 

j 1 2 3 4 5 6 7 8 9 10 

RC[j] 01 02 04 08 10 20 40 80 1B 36 

 

For example, suppose that the round key for round 8 is 
 

EA D2 73 21 B5 8D BA D2 31 2B F5 60 7F 8D 29 2F 
 

Then  the  first  4  bytes  (first  column)  of  the  round  key  for  round  9  are 

calculated as follows: 
 

 

i 

(decima 

l) 

temp After 

RotWor 

d 

After 

SubWord 

Rcon (9) After 

XOR 

with 

Rcon 

w[i 4] w[i] = 

temp 

⊕w[i 4] 

36 7F8D29 8D292F 5DA515 1B0000 46A515 EAD273 AC7766F 
2F 7F D2 00 D2 21 3 

 

Rationale 
 

 

The  Rijndael  developers  designed  the  expansion  key  algorithm  to  be 

resistant to known cryptanalytic attacks. The inclusion of a round-dependent 

round constant eliminates the symmetry, or similarity, between the ways in 

which round keys are generated in different rounds: 
 

• Knowledge of a part of the cipher key or round key does not enable 

calculation of many other round key bits 

• An invertible transformation [i.e., knowledge of any Nk consecutive 

words of the Expanded Key enables regeneration the entire expanded 

key (Nk = key size in words)] 

•   Speed on a wide range of processors 

•   Usage of round constants to eliminate symmetries 

• Diffusion of cipher key differences into the round keys; that is, each 

key bit affects many round key bits 
•   Enough nonlinearity to prohibit the full determination of round key 

differences from cipher key differences only 

•   Simplicity of description



 

 
 

The authors do not quantify the first point on the preceding list, but the idea 

is that if you know less than Nk consecutive words of either the cipher key 

or one of the round keys, then it is difficult to reconstruct the remaining 

unknown bits. The fewer bits one knows, the more difficult it is to do the 

reconstruction or to determine other bits in the key expansion. 
 

Equivalent Inverse Cipher 
 

As was mentioned, the AES decryption cipher is not identical to the encryption 

cipher (Figure 5.1). That is, the sequence of transformations for decryption 

differs from that for encryption, although the form of the key schedules for 

encryption and decryption is the same. This has the disadvantage that two 

separate software or firmware modules are needed for applications that require 

both encryption and decryption. There is, however, an equivalent version of 

the decryption algorithm that has the same structure as the encryption 

algorithm. The equivalent version has the same sequence of  transformations  

as  the  encryption  algorithm  (with  transformations replaced by their 

inverses). To achieve this equivalence, a change in key schedule is needed. 
 

Two separate changes are needed to bring the decryption structure in line 

with  the  encryption  structure.  An  encryption  round  has  the  structure 

SubBytes,  ShiftRows,  MixColumns,  AddRoundKey.  The  standard 

decryption round has the structure InvShiftRows, InvSubBytes, 

AddRoundKey, InvMixColumns. Thus, the first two stages of the decryption 

round need to be interchanged, and the second two stages of the decryption 

round need to be interchanged. 
 

Interchanging InvShiftRows and InvSubBytes 
 

InvShiftRows affects the sequence of bytes in State but does not alter byte 

contents and does not depend on byte contents to perform its transformation. 

InvSubBytes affects the contents of bytes in State but does not alter byte 

sequence   and   does   not   depend   on   byte   sequence   to   perform   its 

transformation.   Thus,   these   two   operations   commute   and   can   be 

interchanged. For a given State Si, 
 

InvShiftRows [InvSubBytes (Si)] = InvSubBytes [InvShiftRows (Si)] 
 

Interchanging AddRoundKey and InvMixColumns



 

 
 

The transformations AddRoundKey and InvMixColumns do not alter the 

sequence of bytes in State. If we view the key as a sequence of words, then 

both AddRoundKey and InvMixColumns operate on State one column at a 

time. These two operations are linear with respect to the column input. That 

is, for a given State Si and a given round key wj: 
 

InvMixColumns (Si ⊕wj) = [InvMixColumns (Si)] ⊕ [InvMixColumns (wj)] 

To see this, suppose that the first column of State Si is the sequence (y0, y1, 

y2, y3) and the first column of the round key wj  is (k0, k1, k2, k3). Then we 
need to show that 

 

 
 
 

Let us demonstrate that for the first column entry. We need to show that: 

[{0E} · (y0 ⊕k0)] ⊕ [{0B} · (y1 ⊕k1)] ⊕ [{0D} · (y2 ⊕k2)] ⊕ [{09} · (y3 

⊕k3)] 

 

= [{0E} · y0] ⊕ [{0B} · y1] ⊕ [{0D} · y2] ⊕ [{09} · y3] 

 

⊕ [[{0E} · k0] ⊕] [{0B} · k1] ⊕ [{0D} · k2] ⊕ [{09} · k3] 
 

This   equation   is   valid   by   inspection.   Thus,   we   can   interchange 

AddRoundKey and InvMixColumns, provided that we first apply 

InvMixColumns to the round key. Note that we do not need to apply 

InvMixColumns to the round key for the input to the first AddRoundKey 

transformation  (preceding  the  first  round) nor  to  the  last  AddRoundKey 

transformation (in round 10). This is because these two AddRoundKey 

transformations are not interchanged with InvMixColumns to produce the 

equivalent decryption algorithm.



 

 
 

Figure 5.7 illustrates the equivalent decryption algorithm. 
 

Figure 5.7. Equivalent Inverse Cipher 

 
(This item is displayed on page 158 in the print version) 

 



 

 
 

Implementation Aspects 
 

The  Rijndael  proposal  provides  some  suggestions  for  efficient 

implementation on 8-bit processors, typical for current smart cards, and on 

32-bit processors, typical for PCs. 
 

8-Bit Processor 
 

AES can be implemented very efficiently on an 8-bit processor. AddRoundKey 

is a bytewise XOR operation. ShiftRows is a simple byte shifting operation. 

SubBytes operates at the byte level and only requires a table of 256 bytes. 
 

The transformation MixColumns requires matrix multiplication in the field 

GF(2
8
),   which   means   that   all   operations   are   carried   out   on   bytes. 

MixColumns only requires multiplication by {02} and {03}, which, as we have 
seen, involved simple shifts, conditional XORs, and XORs. This can be 
implemented  in  a  more  efficient  way  that  eliminates  the  shifts  and 
conditional   XORs.    Equation   Set   (5.4)   shows   the   equations   for   the 
MixColumns transformation on a single column. Using the identity {03} · x 

= ({02} · x) ⊕x, we can rewrite Equation Set (5.4) as follows: 

Equation 5-9 

 

 
 
 
 

Equation Set (5.9) is verified by expanding and eliminating terms. 
 

The multiplication by {02} involves a shift and a conditional XOR. Such an 

implementation may be vulnerable to a timing attack of the sort described in 

Section 3.4. To counter this attack and to increase processing efficiency at 

the  cost  of  some  storage,  the  multiplication  can be  replaced  by  a  table 

lookup. Define the 256-byte table X2, such that X2[i] = {02} ·  i. Then 

Equation Set (5.9) can be rewritten as



 
 
 

Tmp = so, j ⊕s1, j ⊕s2, j ⊕s3, j 
 

s'0, j = s0, j ⊕Tmp ⊕X2[so, j ⊕s1, j] 

s'1, c = s1, j ⊕Tmp ⊕X2[s1, j ⊕s2, j] 

s'2, c = s2, j ⊕Tmp ⊕X2[s2, j ⊕s3, j] 

s'3, j = s3, j ⊕Tmp ⊕X2[s3, j ⊕s0, j] 

32-Bit Processor 
 
The implementation described in the preceding subsection uses only 8-bit 
operations. For a 32-bit processor, a more efficient implementation can be 
achieved if operations are defined on 32-bit words. To show this, we first define 
the four transformations of a round in algebraic form. Suppose we begin with 
a State matrix consisting of elements ai,j and a round key matrix consisting of 
elements ki,j. Then the transformations can be expressed as follows: 

 

 
 
 
 

SubBytes                                                       bi,j = S[ai,j] 

ShiftRows                                                 
 

 

MixColumns 
 
 
 
 
 

 

AddRoundKey



 

 
 

In the ShiftRows equation, the column indices are taken mod 4. We can 

combine all of these expressions into a single equation: 
 

 
 

In the second equation, we are expressing the matrix multiplication as a 

linear combination of vectors. We define four 256-word (1024-byte) tables 

as follows: 
 

 
 
 
 

 

Thus, each table takes as input a byte value and produces a column vector (a 

32-bit word) that is a function of the S-box entry for that byte value. These 

tables can be calculated in advance. 
 

We can define a round function operating on a column in the following fashion: 
 



 
 
 
 

 

As a result, an implementation based on the preceding equation requires 

only four table lookups and four XORs per column per round, plus 4 Kbytes 

to store the table. The developers of Rijndael believe that this compact, 

efficient implementation was probably one of the most important factors in 

the selection of Rijndael for AES. 
 
 
 
 
 
 
 

t a few rounds.



 

 
 
  



 
 
 
 
 
 
 
 

 

Elliptic Curve Arithmetic 
 

Most of the products and standards that use public-key cryptography for 

encryption and digital signatures use RSA. As we have seen, the key length for 

secure RSA use has increased over recent years, and this has put a 

heavier processing load on applications using RSA. This burden has 

ramifications, especially for electronic commerce sites that conduct large 

numbers of secure transactions. Recently, a competing system has begun to 

challenge  RSA:  elliptic  curve  cryptography  (ECC).  Already,  ECC  is 

showing up in standardization efforts, including the IEEE P1363 Standard 

for Public-Key Cryptography. 
 

The principal attraction of ECC, compared to RSA, is that it appears to offer 

equal security for a far smaller key size, thereby reducing processing overhead. 

On the other hand, although the theory of ECC has been around for some 

time, it is only recently that products have begun to appear and that there has 

been sustained cryptanalytic interest in probing for weaknesses. Accordingly, 

the confidence level in ECC is not yet as high as that in RSA. 
 

ECC is fundamentally more difficult to explain than either RSA or Diffie- 

Hellman, and a full mathematical description is beyond the scope of this 

book. This section and the next give some background on elliptic curves and 

ECC. We begin with a brief review of the concept of abelian group. Next, 

we examine the concept of elliptic curves defined over the real numbers.



 

 
 

This  is  followed  by  a  look  at  elliptic  curves  defined  over  finite  fields. 

Finally, we are able to examine elliptic curve ciphers. 
 

Abelian Groups 
 

that an abelian group G, sometimes denoted by {G, • }, is a set of elements with 

a binary operation, denoted by •, that associates to each ordered pair (a, b) of 

elements in G an element (a • b) in G, such that the following axioms are 

obeyed: 
 

The operator • is generic and can refer to addition, multiplication, or some other 

mathematical operation. 
 

(A1) Closure:                If a and b belong to G, then a • b is also in G. 

(A2) Associative:         a • (b • c) = (a • b) • c for all a, b, c in G.
 

(A3)               Identity 

element: 

 

There is an element e in G such that a • e = e • a = a for all a in G.

 

(A4) Inverse element:  For each a in G there is an element a' in G such that a • a' = a' • a 

= e. 
 

(A5) Commutative:      a • b = b • a for all a, b in G. 
 
 

 

A number of public-key ciphers are based on the use of an abelian group. 

For example, Diffie-Hellman key exchange involves multiplying pairs of 

nonzero integers modulo a prime number q. Keys are generated by 

exponentiation over the group, with exponentiation defined as repeated 

multiplication. For example, a
k  

mod q =  mod q. To 

attack Diffie-Hellman, the attacker must determine k given a and a
k
; this is 

the discrete log problem. 
 

For elliptic  curve cryptography, an operation over elliptic  curves, called 

addition,  is  used.  Multiplication  is  defined  by  repeated  addition.  For 

example, , where the addition is performed over an 

elliptic 
 

curve. Cryptanalysis involves determining k given a and (a x k). 
 

An  elliptic  curve  is  defined  by  an  equation  in  two  variables,  with 

coefficients. For cryptography, the variables and coefficients are restricted to



 

 
 

elements in a finite field, which results in the definition of a finite abelian 

group. Before looking at this, we first look at elliptic curves in which the 

variables and coefficients are real numbers. This case is perhaps easier to 

visualize. 
 

 

 

  



Elliptic Curves over Real Numbers 
 

Elliptic  curves  are  not  ellipses.  They  are  so  named  because  they  are 

described by cubic equations, similar to those used for calculating the 

circumference of an ellipse. In general, cubic equations for elliptic curves 

take the form 
 

y
2 

+ axy + by = x
3 

+ cx
2 

+ dx + e 
 

where a, b, c, d, and e are real numbers and x and y take on values in the real 

numbers. For our purpose, it is sufficient to limit ourselves to equations of 

the form 
 

Equation 10-1 
 

 
 
 
 

 

Such equations are said to be cubic, or of degree 3, because the highest 

exponent they contain is a 3. Also included in the definition of an elliptic curve 

is a single element denoted O and called the point at infinity or the zero 

point, which we discuss subsequently. To plot such a curve, we need to 

compute 
 

 
 
 
 

 

For given values of a and b, the plot consists of positive and negative values 

of y for each value of x. Thus each curve is symmetric about y = 0.  Figure 

10.9 shows two examples of elliptic curves. As you can see, the formula 

sometimes produces weird-looking curves.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10.9. Example of Elliptic Curves 

 
(This item is displayed on page 304 in the print version)



 

 
 

 
 
 
 
 

Now, consider the set of points E(a, b) consisting of all of the points (x, y) 

that satisfy  Equation (10.1) together with the element O. Using a different 

value  of  the  pair  (a,  b)  results  in  a  different  set  E(a,  b).  Using  this



 

 
 

terminology, the two curves in  Figure 10.9 depict the sets E(1,0) and E(1, 1), 

respectively. 
 

Geometric Description of Addition 
 

It can be shown that a group can be defined based on the set E(a, b) for specific  

values  of  a  and  b  in   Equation  (10.1),  provided  the  following condition 

is met: 
 

Equation 10-2 
 

 

 
 
 
 

 

To  define  the  group,  we  must  define  an  operation,  called  addition  and 

denoted by +, for the set E(a, b), where a and b satisfy  Equation (10.2). In 

geometric terms, the rules for addition can be stated as follows: If three 

points on an elliptic curve lie on a straight line, their sum is O. From this 

definition, we can define the rules of addition over an elliptic curve: 
 

1.  O serves as the additive identity. Thus O = O; for any point P on the 

elliptic curve, P + O = P. In what follows, we assume P ≠ O and Q ≠ 

O. 

2.  The negative of a point P is the point with the same x coordinate but 

the negative of the y coordinate; that is, if P = (x, y), then P = (x, y). 

Note that these two points can be joined by a vertical line. Note that P 

+ (P) = P P = O. 

3.  To  add  two  points  P  and  Q  with  different  x  coordinates,  draw  a 

straight line between them and find the third point of intersection R. It 

is easily seen that there is a unique point R that is the point of intersection 

(unless the line is tangent to the curve at either P or Q, in which case we 

take R = P or R = Q, respectively). To form a group structure, we need 

to define addition on these three points as follows: P + Q = R. That 

is, we define P + Q to be the mirror image (with respect to the x 

axis) of the third point of intersection.  Figure 10.9 illustrates this 

construction. 

4.  The geometric interpretation of the preceding item also applies to two 

points, P and P, with the same x coordinate. The points are joined by a 

vertical line, which can be viewed as also intersecting the curve at the



 

 
 

infinity point. We therefore have P + ( P) = O, consistent with item 

(2). 

5.  To double a point Q, draw the tangent line and find the other point of 

intersection S. Then Q + Q = 2Q = S. 
 

With the preceding list of rules, it can be shown that the set E(a, b) is an 

abelian group. 
 

Algebraic Description of Addition 
 

In  this  subsection  we  present  some  results  that  enable  calculation  of 
additions over elliptic curves. For two distinct points P = (xP, yP) and Q = 

(xQ, yP) that are not negatives of each other, the slope of the line l that joins 

them is ∆ = (yQ  yP). There is exactly one other point where l intersects the 

elliptic curve, and that is the negative of the sum of P and Q. After some 
algebraic manipulation, we can express the sum R = P + Q as follows: 

 

Equation 10-3 
 

 
 

We also need to be able to add a point to itself: P + P = 2P = R. When yP ≠ 
0, the expressions are 

 

Equation 10-4 
 

 
 
 
 
 
 
 
 
 
 

Elliptic Curves over Zp



 

 
 

Elliptic  curve  cryptography  makes  use  of  elliptic  curves  in  which  the 
variables and coefficients are all restricted to elements of a finite field. Two 
families  of  elliptic  curves  are  used  in  cryptographic  applications:  prime 

curves over Zp  and binary curves over GF (2
m

). For a prime curve over Zp, 

we use a cubic equation in which the variables and coefficients all take on 
values in the set of integers from 0 through p 1 and in which calculations are 

performed modulo p. For a binary curve defined over GF(2
m

), the variables 

and  coefficients  all  take  on  values  in  GF(2
n
)  and  in  calculations  are 

performed over GF(2
n
). points out that prime curves are best for software 

applications, because the extended bit-fiddling operations needed by binary 
curves are not required; and that binary curves are best for hardware 
applications, where it takes remarkably few logic gates to create a powerful, 
fast cryptosystem. We examine these two families in this section and the 
next. 

 

There is no obvious geometric interpretation of elliptic curve arithmetic over 

finite fields. The algebraic interpretation used for elliptic curve arithmetic 

over real numbers does readily carry over, and this is the approach we take. 
 

For elliptic curves over Zp, as with real numbers, we limit ourselves to 

equations of the form of  Equation (10.1), but in this case with coefficients 
and variables limited to Zp: 

 

Equation 10-5 
 

 
 
 
 

 

For example,  Equation (10.5) is satisfied for a = 1, b = 1, x = 9, y = 9, y = 7, 

p = 23: 
 

 

7
2 

mod 23   = (9
3 

+ 9 + 1) mod 23 
 

49 mod 23  = 739 mod 23 
 

3                 = 3 
 
 

 

Now consider the set Ep  (a, b) consisting of all pairs of integers (x, y) that 

satisfy  Equation (10.5), together with a point at infinity O. The coefficients a 
and b and the variables x and y are all elements of Zp.



 

 

For example, let p = 23 and consider the elliptic curve y
2 

= x
3 

+ x + 1. In this 

case, a = b = 1. Note that this equation is the same as that of  Figure 10.9b. 

The figure shows a continuous curve with all of the real points that satisfy 

the equation. For the set E23(1, 1), we are only interested in the nonnegative 

integers in  the  quadrant  from (0,  0)  through  (p  1,  p  1)  that  satisfy  the 

equation mod p.  Table 10.1 lists the points (other than O) that are part of 

E23(1,1).  Figure 10.10 plots the points of E23(1,1); note that the points, with 

one exception, are symmetric about y = 11.5. 
 

Table 10.1. Points on the Elliptic Curve E23(1,1) 

(0, 1) (6, 4) (12, 19) 

(0, 22) (6, 19) (13, 7) 

(1, 7) (7, 11) (13, 16) 

(1, 16) (7, 12) (17, 3) 

(3, 10) (9, 7) (17, 20) 

(3, 13) (9, 16) (18, 3) 

(4, 0) (11, 3) (18, 20) 

(5, 4) (11, 20) (19, 5) 

(5, 19) (12, 4) (19, 18) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure  10.10. The Elliptic Curve E23 (1, 1) 

 
(This item is displayed on page 307 in the print version)



 

 
 

 
 
 
 
 

It can be shown that a finite abelian group can be defined based on the set Ep(a, 

b) provided that (x
3  

+ ax + b) mod p has no repeated factors. This is 
equivalent to the condition 

 

Equation 10-6 
 

 
 
 
 

 

Note that Equation (10.6) has the same form as  Equation (10.2). 
 
The rules for addition over Ep(a, b) correspond to the algebraic technique 
described for elliptic curves defined over real number. For all points P, Q 

 

Ep(a, b);



 

 
 

1.  P + O = P. 
 

If P = (xP, yP) then P + (xP, yP) = O. The point (xP, yP) is the negative 
of P, denoted as P. For example, in E23 (1, 1), for P = (13, 7), we have 
P = (13, 7). But 7  mod 23 = 16. Therefore, P = (13, 16), which is also 
in E23(1,1). 

 
2.  If P = (xP, yQ) and Q = (xQ, yQ) with P ≠Q, then R = P + Q = (xR, yR) is 

determined by the following rules: 
 

xR = (λ 
2 

xP xQ) mod p 
 

yR = (λ (xP xR) yP) mod p 

where 

 
 
 
 

 

3.  Multiplication is defined as repeated addition; for example, 4P = P + P 

+ P + P. 
 

For example, let P = (3,10) and Q = (9,7) in E23(1,1). Then 
 

 
 
 
 
 

xR = (11
2 

3 9) mod 23 = 17 
 

yR = (11(3 17) 10) mod 23 = 164 mod 23 = 20 
 

So P + Q = (17, 20). To find 2P, 
 



 
 
 
 

 

The last step in the preceding equation involves taking the multiplicative 

inverse of 4 in Z23. To confirm, note that (6 x 4) mod 23 = 24 mod 23 = 1. 
 

xR = (6
2 

3 3) mod 23 = 30 mod 23 = 7 
 

yR = (6(3 7) 10) mod 23 = ( 34) mod 23 = 12 

and 2P = (7, 12). 

For determining the security of various elliptic curve ciphers, it is of some 
interest to know the number the number of points in a finite abelian group 
defined over an elliptic curve. In the case of the finite group Ep(a,b), the number 

of points N is bounded by 
 

 
 
 
 

 

Note that the number of points in Ep(a, b) is approximately equal to the number 
of elements in Zp, namely p elements. 

 

Elliptic Curves over GF(2
m

) 
 
a finite field GF(2

m
) consists of 2

m  
elements, together with addition and 

multiplication operations that can be defined over polynomials. For elliptic 
curves over GF(2

m
), we use a cubic equation in which the variables and 

coefficients all take on values in GF(2
m

), for some number m, and in which 
calculations are performed using the rules of arithmetic in GF(2

m
). 

 
It turns out that the form of cubic equation appropriate for cryptographic 

applications for elliptic curves is somewhat different for GF(2
m

) than for Zp. 
The form is 

 
 
 

 

Equation 10-7 
 



 

 
 

where it is understood that the variables x and y and the coefficients a and b 
are elements of GF(2

m
) of and that calculations are performed in GF(2

m
). 

 

Now consider the set E2
m

(a, b) consisting of all pairs of integers (x, y) that 
satisfy  Equation (10.7), together with a point at infinity O. 

 

For  example,  let  us  use  the  finite  field  GF(2
4
)  with  the  irreducible 

polynomial f(x) = x
4 

+ x + 1. This yields a generator that satisfies f(g) = 0, with 

a value of g
4 

= g + 1, or in binary 0010. We can develop the powers of g as 
follows: 

 

g
0 

= 0001 g
4 

= 0011 g
8 

= 0101 g
12 

= 1111 

g
1 

= 0010 g
5 

= 0110 g
9 

= 1010 g
13 

= 1101 

g
2 

= 0100 g
6 

= 1100 g
10 

= 0111 g
14 

= 1001 

g
3 

= 1000 g
7 

= 1011 g
11 

= 1110 g
15 

= 0001 

 

For example, g
5 

= (g
4
)(g) = g

2 
+ g = 0110. 

 

Now consider the elliptic curve y
2  

+ xy = x
3  

+ g
4
x

2  
+ 1. In this case a = g

4
 

and b = g
0 

= 1. One point that satisfies this equation is (g
5
, g

3
): 

 

(g
3
)
2 

+ (g
5
)(g

3
) = (g

5
)
3 

+ (g
4
)(g

5
)

2 
+ 1 

g
6 

+ g
8 

= g
15 

+ g
14 

+ 1 

1100 + 0101 = 0001 + 1001 + 0001 
 

1001 = 1001 
 

Table 10.2 lists the points (other than O) that are part of E2
4
(g

4
, 1).  Figure 

10.11 plots the points of E2
4
(g

4
, 1). 

 

Table 10.2. Points on the Elliptic Curve E2
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Figure 10.11. The Elliptic Curve E2
4
(g

4
, 1) 

 

 
 
 
 

 

It can be shown that a finite abelian group can be defined based on the set 

E2m(a, b), provided that b ≠0. The rules for addition can be stated as follows. 

For all points P, Q ≠E2
m

(a, b): 
 

1.  P + O = P. 
 

If P = (xP, yP), then P + (xP, xp + yP) = O. The point (xP, xP + yP) is the 
negative of P, denoted as P.



 

 
 

2.  If P = (xP, yP) and Q = (xQ, yQ) with P ≠ Q and P ≠ Q, then R = P + Q 

= (xR, yR) is determined by the following rules: 
 

 

xR = λ2 
+ λ + xP + xQ + a 

yR = λ (xP + xR) + xR + yP 

where 

 
 
 
 

 

3.  If = (xP, yP) then R = 2P = (xR, yR) is determined by the following 
rules: 

 

 
 
 
 

 

where 
 



 
 
 
 

Elliptic Curve Cryptography 
 

The addition operation in ECC is the counterpart of modular multiplication 

in   RSA,   and   multiple   additions   are   the   counterpart   of   modular 

exponentiation. To form a cryptographic system using elliptic curves, we 

need to find a "hard problem" corresponding to factoring the product of two 

primes or taking the discrete logarithm. 
 

 
Consider the equation Q = kP where Q, P        Ep(a, b) and k < p. It is relatively 

easy to calculate Q given k and P, but it is relatively hard to determine k given 
Q and P. This is called the discrete logarithm problem for elliptic curves. 

 

Consider the group E23(9, 17). This is the group defined by the equation y
2

 

mod 23 = (x3 + 9x + 17) mod 23. What is the discrete logarithm k of Q = (4, 

5) to the base P = (16.5)? The brute-force method is to compute multiples of 

P until Q is found. 

Thus 

P = (16, 5); 2P = (20, 20); 3P = (14, 14); 4P = (19, 20); 5P = (13, 10); 6P = 

(7, 3); 7P = (8, 7); 8P (12, 17); 9P = (4, 5). 
 

Because 9P = (4, 5) = Q, the discrete logarithm Q = (4, 5) to the base P = 

(16, 5) is k = 9. In a real application, k would be so large as to make the 

brute-force approach infeasible. 
 

In the remainder of this section, we show two approaches to ECC that give 

the flavor of this technique. 
 

Analog of Diffie-Hellman Key Exchange 
 
Key exchange using elliptic curves can be done in the following manner. 
First pick a large integer q, which is either a prime number p or an integer of 

the form 2
m  

and elliptic curve parameters a and b for  Equation (10.5) or 
Equation (10.7). This defines the elliptic group of points Eq(a, b). Next, pick 

a base point G = (x1, y1) in Ep(a, b) whose order is a very large value n. The 

order n of a point G on an elliptic curve is the smallest positive integer n



 

 
 

such that nG = O. Eq(a, b) and G are parameters of the cryptosystem known 
to all participants. 

 

A key exchange between users A and B can be accomplished as follows 

(Figure 10.12): 
 

1.  A selects an integer nA  less than n. This is A's private key. A then 

generates a public key PA = nA x G; the public key is a point in Eq(a, 

b). 

2.  B similarly selects a private key nB and computes a public key PB. 

3.  A generates the secret key K = nA x PB. B generates the secret key K = 
nB x PA. 

 
Figure 10.12. ECC Diffie-Hellman Key Exchange 

 



 

 
 

The two calculations in step 3 produce the same result because 

nA x PB = nA x (nB x G) = nB x (nA x G) = nB x PA 

To break this scheme, an attacker would need to be able to compute k given 

G and kG, which is assumed hard. 
 

As an example, take p = 211; Ep(0, 4), which is equivalent to the curve y
2 

= 

x
3 

4; and G = (2, 2). One can calculate that 240G = O. A's private key is nA = 
121, so A's public key is PA = 121(2, 2) = (115, 48). B's private key is nB = 
203, so B's public key is 203(2, 2) = (130, 203). The shared secret key is 

121(130, 203) = 203(115, 48) = (161, 69). 
 

Note that the secret key is a pair of numbers. If this key is to be used as a 

session key for conventional encryption, then a single number must be 

generated. We could simply use the x coordinates or some simple function 

of the x coordinate. 
 

Elliptic Curve Encryption/Decryption 
 

Several approaches to encryption/decryption using elliptic curves have been 

analyzed in the literature. In this subsection we look at perhaps the simplest. 

The first task in this system is to encode the plaintext message m to be sent 

as an x-y point Pm. It is the point Pm  that will be encrypted as a ciphertext 

and subsequently decrypted. Note that we cannot simply encode the message 

as the x or y coordinate of a point, because not all such coordinates are in Eq(a, 

b); for example, see  Table 10.1. Again, there are several approaches to this 

encoding, which we will not address here, but suffice it to say that there are 

relatively straightforward techniques that can be used. 
 

As with the key exchange system, an encryption/decryption system requires a 

point G and an elliptic group Eq(a, b) as parameters. Each user A selects a 

private key nA and generates a public key PA = nA x G. 
 

To encrypt and send a message Pm to B, A chooses a random positive integer 
k and produces the ciphertext Cm consisting of the pair of points: 

 

Cm = {kG, Pm + kPB}



 

 
 

Note  that  A  has  used  B's  public  key  PB.  To  decrypt  the  ciphertext,  B 
multiplies the first point in the pair by B's secret key and subtracts the result 
from the second point: 

 

Pm + kPB nB(kG) = Pm + k(nBG) nB(kG) = Pm 

 

A has masked the message Pm by adding kPB to it. Nobody but A knows the 

value of k, so even though PB is a public key, nobody can remove the mask 

kPB. However, A also includes a "clue," which is enough to remove the 

mask  if  one  knows  the  private  key  nB.  For  an  attacker  to  recover  the 

message, the attacker would have to compute k given G and kG, which is 
assumed hard. 

 

As an example of the encryption process (taken from [KOBL94]), take p = 
751; Ep(1, 188), which is equivalent to the curve y

2 
= x

3 
x + 188; and G = (0, 

376). Suppose that A wishes to send a message to B that is encoded in the 
elliptic point Pm = (562, 201) and that A selects the random number k = 386. 
B's public key is PB = (201, 5). We have 386(0, 376) = (676, 558), and (562, 
201) + 386(201, 5) = (385, 328). Thus A sends the cipher text {(676, 558), 
(385, 328)}. 

 

Security of Elliptic Curve Cryptography 
 

The security of ECC depends on how difficult it is to determine k given kP and 

P. This is referred to as the elliptic curve logarithm problem. The fastest known 

technique for taking the elliptic curve logarithm is known as the Pollard rho 

method.  Table 10.3 compares various algorithms by showing comparable 

key sizes in terms of computational effort for cryptanalysis. As can be seen, a 

considerably smaller key size can be used for ECC compared to  RSA.  

Furthermore,  for  equal  key  lengths,  the  computational  effort required for 

ECC and RSA is comparable . Thus, there is a computational advantage to 

using ECC with a shorter key length than a comparably secure RSA. 
 
 
 

Table 10.3. Comparable Key Sizes in Terms of Computational Effort for Cryptanalysis 

Symmetric Scheme (key size 

in bits) 

ECC-Based Scheme (size of 

n in bits) 

RSA/DSA  (modulus  size 

in bits) 

56 112 512 



 

 
 

Table 10.3. Comparable Key Sizes in Terms of Computational Effort for Cryptanalysis 

Symmetric Scheme (key size 

in bits) 

ECC-Based Scheme (size of 

n in bits) 

RSA/DSA  (modulus  size 

in bits) 

80 160 1024 

112 224 2048 

128 256 3072 

92 384 7680 

256 512 15360 

Source: Certicom 

 
 
 
 

 

  



 

 
 
 



 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 


