
Computer Science

Department

Computer & Cyber

Security Branch

Advanced Cryptography

2023-2024

Ayad
Typewritten text
Dr. Ayad Hazim

Groups, Rings, and Fields

Groups, rings, and fields are the fundamental elements of a branch of

mathematics known as abstract algebra, or modern algebra. In abstract algebra,

we are concerned with sets on whose elements we can operate algebraically;

that is, we can combine two elements of the set, perhaps in several ways, to

obtain a third element of the set. These operations are subject to specific

rules, which define the nature of the set. By convention, the notation for the

two principal classes of operations on set elements is usually the same as the

notation for addition and multiplication on ordinary numbers. However, it is

important to note that, in abstract algebra, we are

not limited to ordinary arithmetical operations. All this should become clear

as we proceed.

Groups

A group G, sometimes denoted by {G, ·} is a set of elements with a binary

operation, denoted by ·, that associates to each ordered pair (a, b) of

elements in G an element (a · b) in G, such that the following axioms are

obeyed:

The operator · is generic and can refer to addition, multiplication, or some other

mathematical operation.

(A1) Closure: If a and b belong to G, then a · b is also in G.

(A2) Associative: a · (b · c) = (a · b) · c for all a, b, c in G.

(A3) Identity

element:

There is an element e in G such that a · e = e · a = a for all a in G.

(A4) Inverse element: For each a in G there is an element a' in G such that a · a' = a' · a =

e.

Let Nn denote a set of n distinct symbols that, for convenience, we represent as

{1,2,...,n}. A permutation of n distinct symbols is a one-to-one mapping from Nn

to Nn. Define Sn to be the set of all permutations of n distinct symbols. Each
element of Sn is represented by a permutation of the integers in {1,2,...,n}. It is
easy to demonstrate that Sn is a group:

A1: If π, ρ∊ Sn, then the composite mapping π · ρ is formed by permuting the

elements of ρ according to the permutation π. For example, {3,2,1} ·

{1,3,2} = {2,3,1}. Clearly, π · ρ∊Sn.

A2: The composition of mappings is also easily seen to be associative.

A3: The identity mapping is the permutation that does not alter the order of

the n elements. For Sn, the identity element is {1,2,...,n}.

A4: For any π ∊ Sn, the mapping that undoes the permutation defined by π is

the inverse element for π .There will always be such an inverse. For
example {2,3,1} · {3,1,2} = {1,2,3}

If a group has a finite number of elements, it is referred to as a finite group,

and the order of the group is equal to the number of elements in the group.

Otherwise, the group is an infinite group.

A group is said to be abelian if it satisfies the following additional condition:

(A5) Commutative: a · b = b · a for all a, b in G.

The set of integers (positive, negative, and 0) under addition is an abelian group.

The set of nonzero real numbers under multiplication is an abelian group. The

set Sn from the preceding example is a group but not an abelian group for n > 2.

When the group operation is addition, the identity element is 0; the inverse

element of a is a; and subtraction is defined with the following rule: a b = a

+ (b).

Cyclic Group

We define exponentiation within a group as repeated application of the
group operator, so that a

3
= a · a · a. Further, we define a

0
= e, the identity

element; and a
-n

= (a')
n
. A group G is cyclic if every element of G is a power

a
k

(k is an integer) of a fixed element a G. The element a is said to

generate the group G, or to be a generator of G. A cyclic group is always

abelian, and may be finite or infinite.

The additive group of integers is an infinite cyclic group generated by the

element 1. In this case, powers are interpreted additively, so that n is the nth

power of 1.

Rings

A ring R, sometimes denoted by {R, +, x}, is a set of elements with two binary

operations, called addition and multiplication, such that for all a, b, c in R the

following axioms are obeyed:

Generally, we do not use the multiplication symbol, x, but denote multiplication by the

concatenation of two elements.

(A1-A5) R is an abelian group with respect to addition; that is, R satisfies axioms A1 through

A5. For the case of an additive group, we denote the identity element as 0 and the inverse

of a as a.

(M1) Closure under multiplication: If a and b belong to R, then ab is also in R.

(M2) Associativity of multiplication: a(bc) = (ab)c for all a, b, c in R.

(M3) Distributive laws: a(b + c) = ab + ac for all a, b, c in R.

(a + b)c = ac + bc for all a, b, c in R.

In essence, a ring is a set in which we can do addition, subtraction [a b = a +

(-b)], and multiplication without leaving the set.

With respect to addition and multiplication, the set of all n-square matrices over

the real numbers is a ring.

A ring is said to be commutative if it satisfies the following additional

condition:

(M4) Commutativity of multiplication: ab = ba for all a, b in R.

Let S be the set of even integers (positive, negative, and 0) under the usual

operations of addition and multiplication. S is a commutative ring. The set of all

n-square matrices defined in the preceding example is not a commutative ring.

the following axioms:

identity: R.

(M6) No zero divisors: If a, b in R and ab = 0, then either a = 0 or b = 0.

Let S be the set of integers, positive, negative, and 0, under the usual operations

of addition and multiplication. S is an integral domain.

Fields

in F the following axioms are obeyed:

(A1M6) F is an integral domain; that is, F satisfies axioms A1 through A5

through M6.

inverse: aa
-1

= (a
-1

)a = 1.

the following rule: a/b = a(b
-1

).

Familiar examples of fields are the rational numbers, the real numbers, and the

complex numbers. Note that the set of all integers is not a field, because not

every element of the set has a multiplicative inverse; in fact, only the elements 1

and -1 have multiplicative inverses in the integers.

Next, we define an integral domain, which is a commutative ring that obeys

(M5) Multiplicative There is an element 1 in R such that a1 = 1a = a for all a in

A field F, sometimes denoted by {F, +, x}, is a set of elements with two

binary operations, called addition and multiplication, such that for all a, b, c

and M1

(M7) Multiplicative For each a in F, except 0, there is an element a-1 in F such that

In essence, a field is a set in which we can do addition, subtraction,

multiplication, and division without leaving the set. Division is defined with

The next figure summarizes the axioms that define groups, rings, and fields.

Figure Group, Ring, and Field

The Euclidean Algorithm

One of the basic techniques of number theory is the Euclidean algorithm, which

is a simple procedure for determining the greatest common divisor of two

positive integers.

Greatest Common Divisor

Recall that nonzero b is defined to be a divisor of a if a = mb for some m, where

a, b, and m are integers. We will use the notation gcd(a, b) to mean the

greatest common divisor of a and b. The positive integer c is said to be the

greatest common divisor of a and b if

1. c is a divisor of a and of b;

2. any divisor of a and b is a divisor of c.

An equivalent definition is the following:

gcd(a, b) = max[k, such that k|a and k|b]

Because we require that the greatest common divisor be positive, gcd(a, b) =

gcd(a, b) = gcd(a, b) = gcd(a, b). In general, gcd(a, b) = gcd(|a|, |b|).

gcd(60, 24) = gcd(60, 24) = 12

Also, because all nonzero integers divide 0, we have gcd(a, 0) = |a|.

We stated that two integers a and b are relatively prime if their only common

positive integer factor is 1. This is equivalent to saying that a and b are

relatively prime if gcd(a, b) = 1.

8 and 15 are relatively prime because the positive divisors of 8 are 1, 2, 4, and 8, and the

positive divisors of 15 are 1, 3, 5, and 15, so 1 is the only integer on both lists.

Finding the Greatest Common Divisor

The Euclidean algorithm is based on the following theorem: For any

nonnegative integer a and any positive integer b,

Equation 4-4

gcd(55, 22) = gcd(22, 55 mod 22) = gcd(22, 11) = 11

To see that Equation (4.4) works, let d = gcd(a, b). Then, by the definition of

gcd, d|a and d|b. For any positive integer b, a can be expressed in the form

a = kb + r≡≡ r (mod b)

a mod b = r

with k, r integers. Therefore, (a mod b) = a kb for some integer k. But

because d|b, it also divides kb. We also have d|a. Therefore, d|(a mod b).

This shows that d is a common divisor of b and (a mod b). Conversely, if d

is a common divisor of b and (a mod b), then d|kb and thus d|[kb + (a mod

b)], which is equivalent to d|a. Thus, the set of common divisors of a and b is

equal to the set of common divisors of b and (a mod b). Therefore, the gcd

of one pair is the same as the gcd of the other pair, proving the theorem.

Equation (4.4) can be used repetitively to determine the greatest common

divisor.

gcd(18, 12) = gcd(12, 6) = gcd(6, 0) = 6

gcd(11, 10) = gcd(10, 1) = gcd(1, 0) = 1

The Euclidean algorithm makes repeated use of Equation (4.4) to determine

the greatest common divisor, as follows. The algorithm assumes a > b > 0. It

is acceptable to restrict the algorithm to positive integers because gcd(a, b) =

gcd(|a|, |b|).

EUCLID(a, b)

1. A ← a; B ← b

2. if B = 0 return A = gcd(a, b)

3. R = A mod B

4. A ← B

5. B ← R

6. goto 2

The algorithm has the following progression:

To find gcd(1970, 1066)

1970 = 1 x 1066 + 904 gcd(1066, 904)

1066 = 1 x 904 + 162 gcd(904, 162)

904 = 5 x 162 + 94 gcd(162, 94)

162 = 1 x 94 + 68 gcd(94, 68)

94 = 1 x 68 + 26 gcd(68, 26)

68 = 2 x 26 + 16 gcd(26, 16)

26 = 1 x 16 + 10 gcd(16, 10)

16 = 1 x 10 + 6 gcd(10, 6)

10 = 1 x 6 + 4 gcd(6, 4)

6 = 1 x 4 + 2 gcd(4, 2)

4 = 2 x 2 + 0 gcd(2, 0)

Therefore, gcd(1970, 1066) = 2

Finite Fields Of the Form GF(2n)

Earlier in this chapter, we mentioned that the order of a finite field must be

of the form p
n

where p is a prime and n is a positive integer. we looked at the
special case of finite fields with order p. We found that, using modular
arithmetic in Zp, all of the axioms for a field (Figure 4.1) are satisfied. For

polynomials over p
n
, with n > 1, operations modulo p

n
do not produce a

field. In this section, we show what structure satisfies the axioms for a field
in a set with p

n
elements, and concentrate on GF (2

n
).

Motivation

Virtually all encryption algorithms, both symmetric and public key, involve
arithmetic operations on integers. If one of the operations that is used in the
algorithm is division, then we need to work in arithmetic defined over a
field. For convenience and for implementation efficiency, we would also
like to work with integers that fit exactly into a given number of bits, with
no wasted bit patterns. That is, we wish to work with integers in the range 0

through 2
n

1, which fit into an n-bit word.

Suppose we wish to define a conventional encryption algorithm that operates on

data 8 bits at a time and we wish to perform division. With 8 bits, we can

represent integers in the range 0 through 255. However, 256 is not a prime number,

so that if arithmetic is performed in Z256 (arithmetic modulo 256), this set of

integers will not be a field. The closest prime number less than 256 is 251. Thus,

the set Z251, using arithmetic modulo 251, is a field. However, in this case the 8-

bit patterns representing the integers 251 through 255 would not be used, resulting

in inefficient use of storage.

As the preceding example points out, if all arithmetic operations are to be used,
and we wish to represent a full range of integers in n bits, then arithmetic

modulo will not work; equivalently, the set of integers modulo 2
n
, for n > 1,

is not a field. Furthermore, even if the encryption algorithm uses
n

only addition and multiplication, but not division, the use of the set Z2 is
questionable, as the following example illustrates.

Suppose we wish to use 3-bit blocks in our encryption algorithm, and use

only the operations of addition and multiplication. Then arithmetic modulo 8

is well defined, as shown in Table 4.1. However, note that in the multiplication

table, the nonzero integers do not appear an equal number of

times. For example, there are only four occurrences of 3, but twelve
occurrences of 4. On the other hand, as was mentioned, there are finite fields
of the form GF (2

n
) so there is in particular a finite field of order 2

3
= 8.

Arithmetic for this field is shown in Table 4.5. In this case, the number of
occurrences of the nonzero integers is uniform for multiplication. To
summarize,

Integer 1 2 3 4 5 6 7

Occurrences in Z8 4 8 4 12 4 8 4

Occurrences in GF(2
3
) 7 7 7 7 7 7 7

Table 4.5. Arithmetic in GF(2
3
)

(This item is displayed on page 121 in the print version)

For the moment, let us set aside the question of how the matrices of Table

4.5 were constructed and instead make some observations.

1. The addition and multiplication tables are symmetric about the main

diagonal, in conformance to the commutative property of addition and

multiplication. This property is also exhibited in Table 4.1, which uses

mod 8 arithmetic.
2. All the nonzero elements defined by Table 4.5 have a multiplicative

inverse, unlike the case with Table 4.1.
3. The scheme defined by Table 4.5 satisfies all the requirements for a

finite field. Thus, we can refer to this scheme as GF(2
3
).

For convenience, we show the 3-bit assignment used for each of the
elements of GF (2

3
).

Intuitively, it would seem that an algorithm that maps the integers unevenly
onto themselves might be cryptographically weaker than one that provides a

uniform mapping. Thus, the finite fields of the form GF(2
n
) are attractive for

cryptographic algorithms.

To summarize, we are looking for a set consisting of 2
n

elements, together
with a definition of addition and multiplication over the set that define a

field. We can assign a unique integer in the range 0 through 2
n

1 to each
element of the set. Keep in mind that we will not use modular arithmetic, as
we have seen that this does not result in a field. Instead, we will show how
polynomial arithmetic provides a means for constructing the desired field.

Modular Polynomial Arithmetic

Consider the set S of all polynomials of degree n 1 or less over the field Zp.
Thus, each polynomial has the form

where each ai takes on a value in the set {0, 1,..., p 1}. There are a total of p
n

different polynomials in S.

For p = 3 and n = 2, the 3
2

= 9 polynomials in the set are

0 x 2x

1 x + 1 2x + 1

2 x + 2 2x + 2

For p = 2 and n = 3, the 2
3

= 8 the polynomials in the set are

0 x + 1 x
2

+ x

1 x
2

x
2

+ x + 1

x x
2

+ 1

With the appropriate definition of arithmetic operations, each such set S is a

finite field. The definition consists of the following elements:

1. Arithmetic follows the ordinary rules of polynomial arithmetic using

the basic rules of algebra, with the following two refinements.

Arithmetic on the coefficients is performed modulo p. That is, we use

the rules of arithmetic for the finite field Zp.

2. If multiplication results in a polynomial of degree greater than n 1,

then the polynomial is reduced modulo some irreducible polynomial

m(x) of degree n. That is, we divide by m(x) and keep the remainder.

For a polynomial f(x), the remainder is expressed as r(x) = f(x) mod

m(x).

The Advanced Encryption Standard (AES) uses arithmetic in the finite field

GF (2
8
), with the irreducible polynomial m(x) = x

8
+ x

4
x

3
+ x + 1. Consider

the two polynomials f(x) = x
6

+ x
4

+ x
2

+ x + 1 and g(x) = x
7

+ x + 1. Then

f(x) + g(x) = x
6

+ x
4

x
2

+ x + 1 + x
7

+ x + 1

f(x) x g(x) = x
13

+ x
11

+ x
9

+ x
8

+ x
7

+

x
7

+ x
5

+ x
3

+ x
2

+ x +

x
6

+ x
4

+ x
2

+ x + 1

= x
13

+ x
11

+ x
9

+ x
8

+ x
6

+ x
5

+ x
4

+ x
3

+ 1

Therefore, f(x) x g(x) mod m(x) = x
7

+ x
6

+ 1

As with ordinary modular arithmetic, we have the notion of a set of residues
in modular polynomial arithmetic. The set of residues modulo m(x), an nth-

degree polynomial, consists of p
n

elements. Each of these elements is

represented by one of the p
n

polynomials of degree m < n.

The residue class [x + 1], modulo m(x), consists of all polynomials a(x) such

that a(x) (x + 1) (mod m(x)). Equivalently, the residue class [x + 1] consists

of all polynomials a(x) that satisfy the equality a(x) mod m(x) = x + 1.

It can be shown that the set of all polynomials modulo an irreducible nth-

degree polynomial m(x) satisfies the axioms in Figure 4.1, and thus forms a

finite field. Furthermore, all finite fields of a given order are isomorphic;

that is, any two finite-field structures of a given order have the same

structure, but the representation, or labels, of the elements may be different.

To construct the finite field GF (2
3
), we need to choose an irreducible

polynomial of degree 3. There are only two such polynomials: (x
3

+ x
2

+ 1)

and (x
3

+ x + 1). Using the latter, Table 4.6 shows the addition and

multiplication tables for GF (2
3
). Note that this set of tables has the identical

structure to those of Table 4.5. Thus, we have succeeded in finding a way to

define a field of order 2
3
.

Table 4.6. Polynomial Arithmetic Modulo (x
3

+ x + 1)

(This item is displayed on page 124 in the print version)

Finding the Multiplicative Inverse

Just as the Euclidean algorithm can be adapted to find the greatest common

divisor of two polynomials, the extended Euclidean algorithm can be

adapted to find the multiplicative inverse of a polynomial. Specifically, the

algorithm will find the multiplicative inverse of b(x) modulo m(x) if the degree

of b(x) is less than the degree of m(x) and gcd[m(x), b(x)] = 1. If m(x) is

an irreducible polynomial, then it has no factor other than itself or 1, so that

gcd[m(x), b(x)] = 1. The algorithm is as follows:

EXTENDED EUCLID [m(x), b(x)]

1. [A1(x), A2(x), A3(x)] ←[1, 0, m(x)]; [B1(x), B2(x),

B3(x)] ← [0, 1, b(x)]

2. if B3(x) = 0 return A3(x) = gcd[m(x), b(x)]; no

Inverse
3. if B3(x) = 1 return B3(x) = gcd[m(x), b(x)];

B2(x) = b(x)
1

mod m(x)
4. Q(x) = quotient of A3(x)/B3(x)

5. [T1(x), T2(x), T3(x)] ← [A1(x) Q(x)B1(x), A2(x)

Q(x)B2(x), A3(x) QB3(x)]

6. [A1(x), A2(x), A3(x)] ← [B1(x), B2(x), B3(x)]

7. [B1(x), B2(x), B3(x)] ← [T1(x), T2(x), T3(x)]

8. goto 2

Table 4.7 shows the calculation of the multiplicative inverse of (x
7

+ x + 1) mod

(x
8

+ x
4

+ x
3

+ x + 1). The result is that (x
7

+ x + 1)
1

= (x
7
). That is, (x

7
+ x +

1)(x
7
) ≡1 (mod (x

8
+ x

4
+ x

3
+ x + 1)).

Table 4.7. Extended Euclid [(x
8

+ x
4

+ x
3

+ x + 1), (x
7

+ x + 1)]

(This item is displayed on page 125 in the print version)

Initialization A1(x) = 1; A2(x) = 0; A3(x) = x
8

+ x
4
 + x

3
 + x + 1

B1(x) = 0; B2(x) = 1; B3(x) = x
7

+ x + 1

Iteration 1 Q(x) = x

A1(x) = 0; A2(x) = 1; A3(x) = x
7

+ x + 1

B1(x) = 1; B2(x) = x; B3(x) = x
4

+ x
3

+ x
2

+ 1

Iteration 2 Q(x) = x
3

+ x
2

+ 1

A1(x) = 1; A2(x) = x; A3(x) = x
4

+ x
3

+ x
2

+ 1

B1(x) = x
3

+ x
2

+ 1; B2(x) = x
4

+ x
3

+ x + 1; B3(x) = x

Iteration 3 Q(x) = x
3

+ x
2

+ x

A1(x) = x
3

+ x
2

+ 1; A2(x) = x
4

+ x
3

+ x + 1; A3(x) = x
B1(x) = x

6
+ x

2
+ x + 1; B2(x) = x

7
; B3(x) = 1

Iteration 4 B3(x) = gcd[(x
7

+ x + 1), (x
8

+ x
4

+ x
3

+ x + 1)] = 1

B2(x) = (x
7

+ x + 1)
1

mod (x
8

+ x
4

+ x
3

+ x + 1) = x
7

Computational Considerations

A polynomial f(x) in GF(2
n
)

can be uniquely represented by its n binary coefficients (an1an2...a0). Thus,
every polynomial in GF(2

n
) can be represented by an n-bit number.

Tables 4.5 and 4.6 show the addition and multiplication tables for GF(2
3
)

modulo m(x) = (x
3

+ x + 1). Table 4.5 uses the binary representation, and Table

4.6 uses the polynomial representation.

Addition

We have seen that addition of polynomials is performed by adding
corresponding coefficients and, in the case of polynomials over Z2 addition
is just the XOR operation. So, addition of two polynomials in GF(2

n
)

corresponds to a bitwise XOR operation.

Consider the two polynomials in GF(2
8
) from our earlier example: f(x) = x

6
+ x

4

+ x
2

+ x + 1 and g(x) = x
7

+ x + 1.

(x
6

+ x
4

+ x
2

+ x + 1) + (x
7
+ x

+ 1)

= x
7

+ x
6

+ x
6

+ x
4

+

x
2 (polynomial notation)

(01010111) ⊕ (10000011) = (11010100) (binary notation)

(hexadecimal
{57} ⊕ {83} = {D4} notation)

[7]

[7]
A basic refresher on number systems (decimal, binary, hexadecimal) can be

found at the Computer Science Student Resource Site at

WilliamStallings.com/StudentSupport.html. Here each of two groups of 4 bits in

a byte is denoted by a single hexadecimal character, the two characters enclosed

in brackets.

Multiplication

There is no simple XOR operation that will accomplish multiplication in
GF(2

n
) However, a reasonably straightforward, easily implemented

technique is available. We will discuss the technique with reference to
GF(2

8
) using m(x) = x

8
+ x

4
+ x

3
+ x + 1, which is the finite field used in

AES. The technique readily generalizes to GF (2
n
).

The technique is based on the observation that

Equation 4-8

A moment's thought should convince you that Equation (4.8) is true; if not,

divide it out. In general, in GF (2
n
) with an nth-degree polynomial p(x), we

have x
n

mod p(x) = [p(x) x
n
].

Now, consider a polynomial in GF (2
8
), which has the form f(x) = b7x

7
+

b6x
6

+ b5x
5

+ b4x
4

+ b3x
3

+ b2x
2

+ b1x + b0. If we multiply by x, we have

Equation 4-9

If b7 = 0, then the result is a polynomial of degree less than 8, which is

already in reduced form, and no further computation is necessary. If b7 = 1,

then reduction modulo m(x) is achieved using Equation (4.8):

x x f(x) = (b6x
7

+ b5x
6

+ b4x
5

+ b3x
4

+ b2x
3

+

b1x
2

+ b0x) + (x
4

+ x
3

+ x + 1)

It follows that multiplication by x (i.e., 00000010) can be implemented as a
1-bit left shift followed by a conditional bitwise XOR with (00011011),
which represents (x

4
+ x

3
+ x + 1). To summarize,

Equation 4-10

Multiplication by a higher power of x can be achieved by repeated
application of Equation (4.10). By adding intermediate results,
multiplication by any constant in GF(2

8
) can be achieved.

In an earlier example, we showed that for f(x) = x
6

+ x
4

+ x
2

+ x + 1, g(x) = x
7

+

x + 1, and m(x) = x
8

+ x
4

+ x
3

+ x + 1, f(x) x g(x) mod m(x) = x
7

+ x
6

+ 1.
Redoing this in binary arithmetic, we need to compute (01010111) x
(10000011). First, we determine the results of multiplication by powers of x:

(01010111) x (00000001) = (10101110)

(01010111) x (00000100) = (01011100) ⊕ (00011011) = (01000111)

(01010111) x (00001000) = (10001110)

(01010111) x (00010000) = (00011100) ⊕ (00011011) = (00000111)

(01010111) x (00100000) = (00001110)

(01010111) x (01000000) = (00011100)

(01010111) x (10000000) = (00111000)

So,

(01010111) x (10000011) = (01010111) x [(00000001) x (00000010) x

(10000000)]

= (01010111) ⊕ (10101110) ⊕ (00111000) = (11000001)

which is equivalent to x7 + x6 + 1.

Using a Generator

An equivalent technique for defining a finite field of the form GF(2
n
) using

the same irreducible polynomial, is sometimes more convenient. To begin,
we need two definitions: A generator g of a finite field F of order q (contains
q elements) is an element whose first q 1 powers generate all the nonzero

elements of F. That is, the elements of F consist of 0, g
0
, g

1
,..., g

q2
. Consider

a field F defined by a polynomial f(x). An element b contained in F is called
a root of the polynomial if f(b) = 0. Finally, it can be shown that a root g of

an irreducible polynomial is a generator of the finite field defined on that

polynomial.

Let us consider the finite field GF (2
3
), defined over the irreducible polynomial

x
3

+ x + 1, discussed previously. Thus, the generator g must satisfy f(x) = g
3

+ g + 1 = 0. Keep in mind, as discussed previously, that we need not find a
numerical solution to this equality. Rather, we deal with polynomial arithmetic
in which arithmetic on the coefficients is performed modulo 2. Therefore, the

solution to the preceding equality is g
3

= g 1 = g +

1. We now show that g in fact generates all of the polynomials of degree less

than 3. We have the following:

g
4

= g(g
3
) = g(g + 1) = g

2
+ g

g
5

= g(g
4
) = g(g

2
+ g) = g

3
+ g

2
= g

2
+ g + 1

g
6

= g(g
5
) = g(g

2
+ g + 1) = g

3
+ g

2
+ g = g

2
+ g + g + 1 = g

2
+ 1

g
7

= g(g
6
) = g(g

2
+ 1) = g

3
+ g = g + g + 1 = 1 = g

0

We see that the powers of g generate all the nonzero polynomials in GF(2
3
).

Also, it should be clear that g
k

= g
k mod 7

for any integer k. Table 4.8 shows
the power representation, as well as the polynomial and binary
representations.

Table 4.8. Generator for GF(2
3
) using x

3
+ x + 1

Power

Representation

Polynomial

Representation

Binary

Representation

Decimal (Hex)

Representation

0 0 000 0

g
0

(= g
7
) 1 001 1

g
1 g 010 2

g
2

g
2 100 4

g
3 g + 1 011 3

g
4

g
2

+ g 110 6

g
5

g
2

+ g + 1 111 7

g
6

g
2

+ 1 101 5

This power representation makes multiplication easy. To multiply in the power
notation, add exponents modulo 7. For example, g

4
x g

6
= g

(10 mod 7)
= g

3
= g

+ 1. The same result is achieved using polynomial arithmetic, as follows: we
have g

4
= g

2
+ g and g

6
= g

2
+ 1. Then, (g

2
+ g) x (g

2
+ 1) = g

4
+ g

3
+ g

2
+ 1.

Next, we need to determine (g
4

+ g
3

+ g
2

+ 1) mod (g
3

+ g + 1) by division:

We get a result of g + 1, which agrees with the result obtained using the

power representation.

Table 4.9 shows the addition and multiplication tables for GF(2
3
) using the

power represenation. Note that this yields the identical results to the

polynomial representation (Table 4.6) with some of the rows and columns

interchanged.

Table 4.9. GF(2
3
) Arithmetic Using Generator for the Polynomial (x

3
+ x + 1)

(This item is displayed on page 128 in the print version)

In general, for GF(2
n
) with irreducible polynomial f(x), determine g

n
= f(x)

g
n
. Then calculate all of the powers of g from g

n+1
through g

2n2
. The elements

of the field correspond to the powers of g from through g
2n2

, plus the value

0. For multiplication of two elements in the field, use the equality g
k

= g
k mod

(2n1)

for any integer k.

Finite Fields of the Form GF (p)

we defined a field as a set that obeys all of the axioms of Figure 4.1 and
gave some examples of infinite fields. Infinite fields are not of particular
interest in the context of cryptography. However, finite fields play a crucial
role in many cryptographic algorithms. It can be shown that the order of a finite

field (number of elements in the field) must be a power of a prime p
n
, where n

is a positive integer. a prime number is an integer whose only positive
integer factors are itself and 1. That is, the only positive integers

that are divisors of p are p and 1.

The finite field of order p
n

is generally written GF(p
n
); stands for Galois

field, in honor of the mathematician who first studied finite fields. Two

special cases are of interest for our purposes. For n = 1, we have the finite field

GF(p); this finite field has a different structure than that for finite fields with n

> 1 and is studied in this section. .

Finite Fields of Order p

For a given prime, p, the finite field of order p, GF(p) is defined as the set Zp

of integers {0, 1,..., p 1}, together with the arithmetic operations modulo p.

that the set Zn of integers {0,1,...,n 1}, together with the arithmetic

operations modulo n, is a commutative ring (Table 4.2). We further observed
that any integer in Zn has a multiplicative inverse if and only if that integer is

relatively prime to n

If n is prime, then all of the nonzero integers in Zn are relatively prime to n,

and therefore there exists a multiplicative inverse for all of the nonzero integers
in Zn. Thus, we can add the following properties to those listed in Table 4.2 for

Zp:

∊

[4]

As stated in the discussion of Equation (4.3), two integers are relatively

prime if their only common positive integer factor is 1.

Multiplicative inverse (w
1
) For each w

Zp, w ≠0, there exists a

z ∊ Zp such that w x z ≡ 1 (mod p)

Because w is relatively prime to p, if we multiply all the elements of Zp by

w, the resulting residues are all of the elements of Zp permuted. Thus,

exactly one of the residues has the value 1. Therefore, there is some integer
Zp in that, when multiplied by w, yields the residue 1. That integer is the

multiplicative inverse of w, designated w
1
. Therefore, Zp is in fact a finite

field. Further, Equation (4.3) is consistent with the existence of a

multiplicative inverse and can be rewritten without the condition:

Equation 4-5

Multiplying both sides of Equation (4.5) by the multiplicative inverse of a,

we have:

((a
1
) x a x b) ≡ ((a

1
) x a x c)(mod p)

b ≡c (mod p)

The simplest finite field is GF(2). Its arithmetic operations are easily

summarized:

Addition Multiplication Inverses

In this case, addition is equivalent to the exclusive-OR (XOR) operation, and

multiplication is equivalent to the logical AND operation.

Table 4.3 shows GF (7). This is a field of order 7 using modular arithmetic
modulo 7. As can be seen, it satisfies all of the properties required of a field
(Figure 4.1). Compare this table with Table 4.1. In the latter case, we see
that the set Z8 using modular arithmetic modulo 8, is not a field. Later in this

chapter, we show how to define addition and multiplication operations on Z8 in

such a way as to form a finite field.

Table 4.3. Arithmetic in GF (7)

(This item is displayed on page 111 in the print version)

Finding the Multiplicative Inverse in GF (p)

It is easy to find the multiplicative inverse of an element in GF(p) for small

values of p. You simply construct a multiplication table, such as shown in

Table 4.3b, and the desired result can be read directly. However, for large

values of p, this approach is not practical.

If gcd(m, b) = 1, then b has a multiplicative inverse modulo m. That is, for
positive integer b < m, there exists a b

1
< m such that bb

1
= 1 mod m. The

Euclidean algorithm can be extended so that, in addition to finding gcd(m,
b), if the gcd is 1, the algorithm returns the multiplicative inverse of b.

EXTENDED EUCLID (m, b)

1. (A1, A2, A3) ← (1, 0, m); (B1, B2, B3) ← (0, 1, b)
2. if B3 = 0 return A3 = gcd(m, b); no inverse

3. if B3 = 1 return B3 = gcd(m, b); B2 = b
1

mod m

4.

5. (T1, T2, T3) ← (A1 QB1, A2 QB2, A3 QB3)

6. (A1, A2, A3) ← (B1, B2, B3)

7. (B1, B2, B3) ← (T1, T2, T3)

8. goto 2

Throughout the computation, the following relationships hold:

mT1 + bT2 = T3 mA1 + bA2 = A3 mB1 + bB2 = B3

To see that this algorithm correctly returns gcd(m, b), note that if we equate

A and B in the Euclidean algorithm with A3 and B3 in the extended

Euclidean algorithm, then the treatment of the two variables is identical. At

each iteration of the Euclidean algorithm, A is set equal to the previous

value of B and B is set equal to the previous value of A mod B. Similarly, at

each step of the extended Euclidean algorithm, A3 is set equal to the

previous value of B3, and B3 is set equal to the previous value of A3 minus

the integer quotient of A3 multiplied by B3. This latter value is simply the

remainder of A3 divided by B3, which is A3 mod B3.

Note also that if gcd(m, b) = 1, then on the final step we would have B3 = 0

and A3 = 1. Therefore, on the preceding step, B3 = 1. But if B3 = 1, then we

can say the following:

mB1 + bB2 = B3

mB1 + bB2 = 1

bB2 = 1 mB1

bB2 ≡ 1 (mod m)

And B2 is the multiplicative inverse of b, modulo m.

Table 4.4 is an example of the execution of the algorithm. It shows that

gcd(1759, 550) = 1 and that the multiplicative inverse of 550 is 355; that is, 550

x 335 ≡ 1 (mod 1759).

Table 4.4. Finding the Multiplicative Inverse of 550 in GF(1759)

Q A1 A2 A3 B1 B2 B3

1 0 1759 0 1 550

3 0 1 550 1 3 109

5 1 3 109 5 16 5

21 5 16 5 106 339 4

1 106 339 4 111 355 1

Modular Arithmetic

Given any positive integer n and any nonnegative integer a, if we divide a by

n, we get an integer quotient q and an integer remainder r that obey the

following relationship:

Equation 4-1

where ⌊x⌋is the largest integer less than or equal to x.

Figure 4.2 demonstrates that, given a and positive n, it is always possible to

find q and r that satisfy the preceding relationship. Represent the integers on

the number line; a will fall somewhere on that line (positive a is shown, a

similar demonstration can be made for negative a). Starting at 0, proceed to

n, 2n, up to qn such that qn ≤a and (q + 1)n > a. The distance from qn to a is

r, and we have found the unique values of q and r. The remainder r is often

referred to as a residue.

Figure 4.2. The Relationship a = qn + r, 0 ≤ r < n

a = 11; n = 7; 11 = 1 x 7 + 4; r = 4 q = 1

a = -11; n = 7; -11 = (-2) x 7 + 3; r = 3 q = -2

If a is an integer and n is a positive integer, we define a mod n to be the

remainder when a is divided by n. The integer n is called the modulus. Thus,

for any integer a, we can always write:

a = ⌊a/n⌋x n + (a mod n)

11 mod 7 = 4; -11 mod 7 = 3

Two integers a and b are said to be congruent modulo n, if (a mod n) = (b

mod n). This is written as a ≡ b (mod n).

We have just used the operator mod in two different ways: first as a binary

operator that produces a remainder, as in the expression a mod b; second as a

congruence relation that shows the equivalence of two integers, as in the

expression To distinguish the two uses, the mod term is enclosed in parentheses

for a congruence relation; this is common but not universal in the literature.

See Appendix D for a further discussion.

73 ≡ 4 (mod 23); 21 ≡ -9 (mod 10)

Divisors

We say that a nonzero b divides a if a = mb for some m, where a, b, and m

are integers. That is, b divides a if there is no remainder on division. The

notation is commonly used to mean b divides a. Also, if b|a, we say that b is

a divisor of a.

The positive divisors of 24 are 1, 2, 3, 4, 6, 8, 12, and 24.

The following relations hold:

• If a|1, then a = ±1.

• If a|b and b|a, then a = ±b.

• Any b ≠ 0 divides 0.

• If b|g and b|h, then b|(mg + nh) for arbitrary integers m and n.

To see this last point, note that

If b|g, then g is of the form g = b x g1 for some integers g1.

If b|h, then h is of the form h = b x h1 for some integers h1.

So

mg + nh = mbg1 + nbh1 = b x (mg1 + nh1)

and therefore b divides mg + nh.

b = 7; g = 14; h = 63; m = 3; n = 2.

7|14 and 7|63. To show: 7|(3 x 14 + 2 x 63)

We have (3 x 14 + 2 x 63) = 7(3 x 2 + 2 x 9)

And it is obvious that 7|(7(3 x 2 + 2 x 9))

Note that if a ≡ 0 (mod n), then n|a.

Properties of Congruences

Congruences have the following properties:

1. a ≡ b (mod n) if n|(a b).

2. a ≡ b (mod n) implies b ≡ a (mod n)..

3. a ≡ b (mod n) and b ≡ c (mod n) imply a ≡ c (mod n).

To demonstrate the first point, if n|(a b), then (a b) = kn for some k. So we

can write a = b + kn. Therefore, (a mod n) = (reminder when b + kn is

divided by n) = (reminder when b is divided by n) = (b mod n)

23 ≡ 8 (mod 5) because 23 8 = 15 = 5 3

11 ≡ 5 (mod 8) because 11 5 = 16 = 8 x (2)

81 ≡ 0 (mod 27) because 81 0 = 81 = 27 x 3

The remaining points are as easily proved.

Modular Arithmetic Operations

Note that, by definition (Figure 4.2), the (mod n) operator maps all integers

into the set of integers {0, 1,... (n 1)}. This suggests the question: Can we

perform arithmetic operations within the confines of this set? It turns out that

we can; this technique is known as modular arithmetic.

Modular arithmetic exhibits the following properties:

1. [(a mod n) + (b mod n)] mod n = (a + b) mod n

2. [(a mod n) (b mod n)] mod n = (a b) mod n

3. [(a mod n) x (b mod n)] mod n = (a x b) mod n

We demonstrate the first property. Define (a mod n) = ra and (b mod n) = rb.

Then we can write a = ra + jn for some integer j and b = rb + kn for some

integer k. Then

(a + b) mod n = (ra + jn + rb +kn) mod n

= (ra + rb (k + j)n) mod n

= (ra + rb) mod n

= [(a mod n] + (b mod n)] mod n

The remaining properties are as easily proved. Here are examples of the

three properties:

11 mod 8 = 3; 15 mod 8 = 7

[(11 mod 8) + (15 mod 8)] mod 8 = 10 mod 8 = 2

(11 + 15) mod 8 = 26 mod 8 = 2

[(11 mod 8) (15 mod 8)] mod 8 = 4 mod 8 = 4

(11 15) mod 8 = 4 mod 8 = 4

[(11 mod 8) x (15 mod 8)] mod 8 = 21 mod 8 = 5

(11 x 15) mod 8 = 165 mod 8 = 5

Exponentiation is performed by repeated multiplication, as in ordinary

arithmetic.

To find 11
7

mod 13, we can proceed as follows:

11
2

= 121 ≡ 4 (mod 13)

11
4

= (11
2
)
2

≡ 4
2

≡ 3 (mod 13)

11
7

≡ 11 x 4 x 3 ≡ 132 ≡ 2 (mod 13)

Thus, the rules for ordinary arithmetic involving addition, subtraction, and

multiplication carry over into modular arithmetic.

Table 4.1 provides an illustration of modular addition and multiplication

modulo 8. Looking at addition, the results are straightforward and there is a

regular pattern to the matrix. Both matrices are symmetric about the main

diagonal, in conformance to the commutative property of addition and

multiplication. As in ordinary addition, there is an additive inverse, or negative,

to each integer in modular arithmetic. In this case, the negative of an integer

x is the integer y such that (x + y) mod 8 = 0. To find the additive inverse of

an integer in the left-hand column, scan across the corresponding row of the

matrix to find the value 0; the integer at the top of that column is the additive

inverse; thus (2 + 6) mod 8 = 0. Similarly, the entries in the multiplication table

are straightforward. In ordinary arithmetic, there is a multiplicative inverse, or

reciprocal, to each integer. In modular arithmetic mod 8, the multiplicative

inverse of x is the integer y such that (x x y) mod 8
= 1 mod 8. Now, to find the multiplicative inverse of an integer from the
multiplication table, scan across the matrix in the row for that integer to find
the value 1; the integer at the top of that column is the multiplicative inverse;

thus (3 x 3) mod 8 = 1. Note that not all integers mod 8 have a multiplicative

inverse; more about that later.

Table 4.1. Arithmetic Modulo 8

Properties of Modular Arithmetic

Define the set Zn as the set of nonnegative integers less than n:

Zn = {0, 1,...,(n 1)}

This is referred to as the set of residues, or residue classes modulo n. To be
more precise, each integer in Zn represents a residue class. We can label the

residue classes modulo n as [0], [1], [2],...,[n 1], where

[r] = {a: a is an integer, a ≡ r (mod n)}

The residue classes modulo 4 are

The residue classes modulo 4 are

[0] = { ..., 16, 12, 8, 4, 0, 4, 8, 12, 16,... }

[1] = { ..., 15, 11, 7, 3, 1, 5, 9, 13, 17,... }

[2] = { ..., 14, 10, 6, 2, 2, 6, 10, 14, 18,... }

[3] = { ..., 13, 9, 5, 1, 3, 7, 11, 15, 19,... }

Of all the integers in a residue class, the smallest nonnegative integer is the

one usually used to represent the residue class. Finding the smallest

nonnegative integer to which k is congruent modulo n is called reducing k

modulo n.

If we perform modular arithmetic within Zn, the properties shown in Table

4.2 hold for integers in Zn. Thus, Zn is a commutative ring with a
multiplicative identity element (Figure 4.1).

Table 4.2. Properties of Modular Arithmetic for Integers in Zn

Property Expression

Commutative laws (w + x) mod n = (x + w) mod n
(w x x) mod n = (x x w) mod n

Associative laws [(w + x) + y] mod n = [w + (x + y)] mod n

[(w x x) x y] mod n = [w x (x x y)] mod n

Distributive laws [w + (x + y)] mod n = [(w x x) + (w x y)] mod n

[w + (x x y)] mod n = [(w + x) x (w + y)] mod n

Identities (0 + w) mod n = w mod n
(1 + w) mod n = w mod n

Additive inverse (-w)

For each w ≡ Zn, there exists a z such

th

at w + z

0 mo

d n

There is one peculiarity of modular arithmetic that sets it apart from ordinary

arithmetic. First, observe that, as in ordinary arithmetic, we can write the

following:

Equation 4-2

(5 + 23) ≡ (5 + 7)(mod 8}; 23 ≡ 7 (mod 8)

Equation (4.2) is consistent with the existence of an additive inverse. Adding

the additive inverse of a to both sides of Equation (4.2), we have:

((a) + a + b) ≡ ((a) + a + c)(mod n)

b ≡ c (mod n)

However, the following statement is true only with the attached condition:

Equation 4-3

where the term relatively prime is defined as follows: two integers are

relatively prime if their only common positive integer factor is 1. Similar to the

case of Equation (4.2), we can say that Equation (4.3) is consistent with the

existence of a multiplicative inverse. Applying the multiplicative inverse of a

to both sides of Equation (4.2), we have:

((a
1
)ab) ≡ ((a

1
)ac)(mod n)

b ≡ c (mod n)

To see this, consider an example in which the condition of Equation (4.3) does

not hold. The integers 6 and 8 are not relatively prime, since they have the common

factor 2. We have the following:

6 x 3 = 18 ≡ 2 (mod 8)

6 x 7 = 42 ≡ 2 (mod 8)

Yet 3 ≢7 (mod 8).

The reason for this strange result is that for any general modulus n, a multiplier

a that is applied in turn to the integers 0 through (n 1) will fail to produce a

complete set of residues if a and n have any factors in common.

With a = 6 and n = 8,

Z8 0 1 2 3 4 5 6 7

Multiply by 6 0 6 12 18 24 30 36 42

Residues 0 6 4 2 0 6 4 2

Because we do not have a complete set of residues when multiplying by 6, more

than one integer in Z8 maps into the same residue. Specifically, 6 x 0 mod 8 = 6

x 4 mod 8; 6 x 1 mod 8 = 6 x 5 mod 8; and so on. Because this is a many-to-one

mapping, there is not a unique inverse to the multiply operation.

However, if we take a = 5 and n = 8, whose only common factor is 1,

Z8 0 1 2 3 4 5 6 7

Multiply by 6 0 5 10 15 20 25 30 35

Residues 0 5 2 7 4 1 6 3

The line of residues contains all the integers in Z8, in a different order.

In general, an integer has a multiplicative inverse in Zn if that integer is

relatively prime to n. Table 4.1c shows that the integers 1, 3, 5, and 7 have a
multiplicative inverse in Z8, but 2, 4, and 6 do not.

Polynomial Arithmetic

Before pursuing our discussion of finite fields, we need to introduce the

interesting subject of polynomial arithmetic. We are concerned with

polynomials in a single variable x, and we can distinguish three classes of

polynomial arithmetic:

• Ordinary polynomial arithmetic, using the basic rules of algebra

• Polynomial arithmetic in which the arithmetic on the coefficients is

performed modulo p; that is, the coefficients are in GF(p)

• Polynomial arithmetic in which the coefficients are in GF(p), and the

polynomials are defined modulo a polynomial m(x) whose highest

power is some integer n

This section examines the first two classes, and the next section covers the

last class.

Ordinary Polynomial Arithmetic

A polynomial of degree n (integer n ≥0) is an expression of the form

where the ai are elements of some designated set of numbers S, called the
coefficient set, and an ≠0. We say that such polynomials are defined over the
coefficient set S.

A zeroth-degree polynomial is called a constant polynomial and is simply an

element of the set of coefficients. An nth-degree polynomial is said to be a

monic polynomial if an = 1.

In the context of abstract algebra, we are usually not interested in evaluating

a polynomial for a particular value of x [e.g., f(7)]. To emphasize this point,

the variable x is sometimes referred to as the indeterminate.

Polynomial arithmetic includes the operations of addition, subtraction, and
multiplication. These operations are defined in a natural way as though the
variable x was an element of S. Division is similarly defined, but requires
that S be a field. Examples of fields include the real numbers, rational
numbers, and Zp for p prime. Note that the set of all integers is not a field
and does not support polynomial division.

Addition and subtraction are performed by adding or subtracting corresponding

coefficients. Thus, if

Then addition is defined as

and multiplication is defined as

where

ck = a0bk1 + a1bk1 + ... + ak1b1 + akb0

In the last formula, we treat ai as zero for i > n and bi as zero for i > m. Note

that the degree of the product is equal to the sum of the degrees of the two
polynomials.

As an example, let f(x) = x
3

+ x
2

+ 2 and g(x) = x
2

x + 1, where S is the set

of integers. Then

f(x) + g(x) = x
3

+ 2x
2

x + 3

f(x) g(x) = x
3

+ x + 1

f(x) x g(x) = x
5

+ 3x
2

2x + 2

Figures 4.3a through 4.3c show the manual calculations. We comment on

division subsequently.

Figure 4.3. Examples of Polynomial Arithmetic

Polynomial Arithmetic with Coefficients in Zp

Let us now consider polynomials in which the coefficients are elements of

some field F. We refer to this as a polynomial over the field F. In that case, it

is easy to show that the set of such polynomials is a ring, referred to as a

polynomial ring. That is, if we consider each distinct polynomial to be an

element of the set, then that set is a ring.

In fact, the set of polynomials whose coefficients are elements of a

commutative ring forms a polynomial ring, but that is of no interest in the

present context.

When polynomial arithmetic is performed on polynomials over a field, then

division is possible. Note that this does not mean that exact division is possible.

Let us clarify this distinction. Within a field, given two elements a and b, the

quotient a/b is also an element of the field. However, given a ring R that is

not a field, in general division will result in both a quotient and a remainder;

this is not exact division.

Consider the division 5/3 within a set S. If S is the set of rational numbers,

which is a field, then the result is simply expressed as 5/3 and is an element of

S. Now suppose that S is the field Z7. In this case, we calculate (using Table
4.3c):

5/3 = (5 x 3
1
) mod 7 = (5 x 5) mod 7 = 4

which is an exact solution. Finally, suppose that S is the set of integers, which is

a ring but not a field. Then 5/3 produces a quotient of 1 and a remainder of 2:

5/3 = 1 + 2/3

5 = 1 x 3 + 2

Thus, division is not exact over the set of integers.

Now, if we attempt to perform polynomial division over a coefficient set that

is not a field, we find that division is not always defined.

If the coefficient set is the integers, then (5x
2
)/(3x) does not have a solution,

because it would require a coefficient with a value of 5/3, which is not in the

coefficient set. Suppose that we perform the same polynomial division over Z7.

Then we have (5x2)/(3x) = 4x which is a valid polynomial over Z7.

However, as we demonstrate presently, even if the coefficient set is a field,

polynomial division is not necessarily exact. In general, division will

produce a quotient and a remainder:

Equation 4-6

If the degree of f(x) is n and the degree of g(x) is m, (m ≥n), then the degree

of the quotient q(x) m n is and the degree of the remainder is at most m - 1.

With the understanding that remainders are allowed, we can say that

polynomial division is possible if the coefficient set is a field.

In an analogy to integer arithmetic, we can write f(x) mod g(x) for the

remainder r(x) in Equation (4.6). That is, r(x) = f(x) mod g(x). If there is no

remainder [i.e., r(x) = 0], then we can say g(x) divides f(x), written as g(x)|f(x);

equivalently, we can say that g(x) is a factor of f(x) or g(x) is a divisor of f(x).

For the preceding example and [f(x) = x
3

+ x
2

+ 2 and g(x) = x
2

x + 1], f(x)/g(x)

produces a quotient of q(x) = x + 2 and a remainder r(x) = x as shown in Figure

4.3d. This is easily verified by noting that

q(x)g(x) + r(x) = (x + 2)(x
2

x + 1) + x = (x
3

+ x
2

x + 2) + x

= x3 + x2 + 2 = f(x)

For our purposes, polynomials over GF (2) are of most interest. That in

GF(2), addition is equivalent to the XOR operation, and multiplication is

equivalent to the logical AND operation. Further, addition and subtraction

are equivalent mod 2: 1 + 1 = 1 1 = 0; 1 + 0 = 1 0 = 1; 0 + 1 = 0 1 = 1.

Figure 4.4 shows an example of polynomial arithmetic over GF(2). For f(x)

= (x
7

+ x
5

+ x
4

+ x
3

+x + 1) and g(x) = (x
3

+ x + 1), the figure shows f(x) +

g(x); f(x) g(x); f(x) x g(x); and f(x)/g(x). Note that g(x)|f(x)

Figure 4.4. Examples of Polynomial Arithmetic over GF(2)

A polynomial f(x) over a field F is called irreducible if and only if f(x)

cannot be expressed as a product of two polynomials, both over F, and both

of degree lower than that of f(x). By analogy to integers, an irreducible

polynomial is also called a prime polynomial.

The polynomial f(x) = x
4

+ 1 over GF(2) is reducible, because x
4

+ 1 = (x +

1)(x
3

+ x
2

+ x + 1)

Consider the polynomial f(x) = x
3

+ x + 1. It is clear by inspection that x is

not a factor of f(x). We easily show that x + 1 is not a factor of f(x):

Thus f(x) has no factors of degree 1. But it is clear by inspection that if f(x)

is reducible, it must have one factor of degree 2 and one factor of degree 1.

Therefore, f(x) is irreducible.

Finding the Greatest Common Divisor

We can extend the analogy between polynomial arithmetic over a field and

integer arithmetic by defining the greatest common divisor as follows. The

polynomial c(x) is said to be the greatest common divisor of a(x) and b(x) if

1. c(x) divides both a(x) and b(x);

2. any divisor of a(x) and b(x) is a divisor of c(x).

An equivalent definition is the following: gcd[a(x), b(x)] is the polynomial

of maximum degree that divides both a(x) and b(x).

We can adapt the Euclidean algorithm to compute the greatest common divisor

of two polynomials. The equality in Equation (4.4) can be rewritten as the

following theorem:

Equation 4-7

The Euclidean algorithm for polynomials can be stated as follows. The

algorithm assumes that the degree of a(x) is greater than the degree of b(x).

Then, to find gcd[a(x), b(x)],

EUCLID[a(x), b(x)]

1. A(x)← a(x); B(x) ← b(x)

2. if B(x) = 0 return A(x) = gcd[a(x), b(x)]

3. R(x) = A(x) mod B(x)

4. A(x) ← B(x)

5. B(x) ← R(x)

6. goto 2

Find gcd[a(x), b(x)] for a(x) = x
6

+ x
5

+x
4

+ x
3

+ x
2

+x + 1 and b(x) = x
4

+ x
2

+ x + 1.

A(x) = a(x); B(x) = b(x)

R(x) = A(x) mod B(x) = x
3

+ x
2

+ 1

A(x) = x
4

+ x
2

+ x + 1; B(x) = x
3

+ x
2

+ 1

Summary

We began this section with a discussion of arithmetic with ordinary

polynomials. In ordinary polynomial arithmetic, the variable is not

evaluated; that is, we do not plug a value in for the variable of the polynomials.

Instead, arithmetic operations are performed on polynomials (addition,

subtraction, multiplication, division) using the ordinary rules of algebra.

Polynomial division is not allowed unless the coefficients are elements of a

field.

Next, we discussed polynomial arithmetic in which the coefficients are

elements of GF(p). In this case, polynomial addition, subtraction,

multiplication, and division are allowed. However, division is not exact; that

is, in general division results in a quotient and a remainder.

Finally, we showed that the Euclidean algorithm can be extended to find the

greatest common divisor of two polynomials whose coefficients are

elements of a field.

All of the material in this section provides a foundation for the following
section, in which polynomials are used to define finite fields of order p

n
.

Polynomials with Coefficients in GF (28)

we discussed polynomial arithmetic in which the coefficients are in Zp and

the polynomials are defined modulo a polynomial M(x) whose highest
power is some integer n. In this case, addition and multiplication of coefficients
occurred within the field Zp; that is, addition and multiplication were

performed modulo p.

The AES document defines polynomial arithmetic for polynomials of degree

3 or less with coefficients in GF(2
8
). The following rules apply:

1. Addition is performed by adding corresponding coefficients in

GF(2
8
). if we treat the elements of GF(2

8
) as 8-bit strings, then

addition is equivalent to the XOR operation. So, if we have

Equation 5-8

Equation 5-9

then

a(x) + b(x) = (a3 ⊕b3)x
3

+ (a
2 ⊕b2)x

2
+ (a1 ⊕b1)x + (a0 ⊕b0)

2. Multiplication is performed as in ordinary polynomial multiplication,

with two refinements:

a. Coefficients are multiplied in GF(2
8
).

b. The resulting polynomial is reduced mod (x
4

+ 1).

We need to keep straight which polynomial we are talking about. that each

element of GF(2
8
) is a polynomial of degree 7 or less with binary

coefficients, and multiplication is carried out modulo a polynomial of degree
8. Equivalently, each element of GF(2

8
) can be viewed as an 8-bit byte

whose bit values correspond to the binary coefficients of the corresponding
polynomial. For the sets defined in this section, we are defining a
polynomial ring in which each element of this ring is a polynomial of degree
3 or less with coefficients in GF(2

8
), and multiplication is carried out

modulo a polynomial of degree 4. Equivalently, each element of this ring
can be viewed as a 4-byte word whose byte values are elements of GF(2

8
)

that correspond to the 8-bit coefficients of the corresponding polynomial.

We denote the modular product of a(x) and b(x) by a(x) ⊕b(x). To compute

d(x) = a(x) ⊕b(x), the first step is to perform a multiplication without the

modulo operation and to collect coefficients of like powers. Let us express
this as c(x) = a(x) x b(x) Then

Equation 5-10

where

c0 = a0 · b0

c1 = (a1 · b0) ⊕ (a0 · b1)

c2 = (a2 · b0) ⊕ (a1 · b1) ⊕ (a0 · b2)

c3 = (a3 · b0) ⊕ (a2 · b1) ⊕ (a1 · b2) (a0 · b3)

c4 = (a3 · b1) ⊕ (a2 · b2) ⊕ (a1 · b3)

c5 = (a3 · b2) ⊕ (a2 · b3)

c6 = (a3 · b3)

The final step is to perform the modulo operation:

d(x) = c(x) mod (x
4

+ 1)

That is, d(x) must satisfy the equation

c(x) = [(x
4

+ 1) x q(x)] ⊕d(x)

such that the degree of d(x) is 3 or less.

A practical technique for performing multiplication over this polynomial

ring is based on the observation that

Equation 5-11

If we now combine Equations (5.10) and (5.11), we end up with

d(x) = c(x) mod (x
4

+ 1) = [c6x
6

+ c5x
5

+ c4x
4

+ c3x
3

+ c2x
2

+ c1x + c0] mod
(x4 + 1)

= c3x
3

+ (c2 ⊕c6)x
2

+ (c1 ⊕c5)x + (c0 ⊕c4)

Expanding the ci coefficients, we have the following equations for the
coefficients of d(x):

d0 = (a0 · b0) ⊕ (a3 · b1) ⊕ (a) · b2) ⊕ (a1 · b3)

d1 = (a1 · b0) ⊕ (a0 · b1) ⊕ (a3 · b2) ⊕ (a) · b3)

d2 = (a2) · b0) ⊕ (a1 · b1) ⊕ (a0 · b2) ⊕ (a3 · b3)

d3 = (a3 · b0) ⊕ (a) · b1) ⊕ (a1 · b2) ⊕ (a0 · b3)

This can be written in matrix form:

Equation 5-12

MixColumns Transformation

In the discussion of MixColumns, it was stated that there were two

equivalent ways of defining the transformation. The first is the matrix

multiplication shown in Equation (5.3), repeated here:

The second method is to treat each column of State as a four-term
polynomial with coefficients in GF(2

8
). Each column is multiplied modulo

(x
4

+ 1) by the fixed polynomial a(x), given by

a(x = {03}x
3

+ {01}x
2

+ {01}x + {02}

From Equation (5.8), we have a3 = {03}; a2 = {01}; a0 = {02}. For the jth
column of State, we have the polynomial colj(x) = s3,jx

3
+ s2,jx

2
+ s1,jx + s0,j.

Substituting into Equation (5.12), we can express d(x) = a(x) x colj(x) as

which is equivalent to Equation (5.3).

Multiplication by x

Consider the multiplication of a polynomial in the ring by x: c(x) = x ⊕b(x). We

have

c(x) = x ⊕b(x) = [x x (b3x
3
) + b2x

2
+ b1x + b0)] mod (x

4
+ 1)

= (b3x
4

+ b2x
3

+ b1x
2

+ b0x) mod (x
4

+ 1)

= b2x
3

+ b1x
2

+ b0x + b3

Thus, multiplication by x corresponds to a 1-byte circular left shift of the 4 bytes

in the word representing the polynomial. If we represent the polynomial as

a 4-byte column vector, then we have

Evaluation Criteria For AES

The Origins of AES

in 1999, NIST issued a new version of its DES standard (FIPS PUB 46-3)

that indicated that DES should only be used for legacy systems and that

triple DES (3DES) be used. 3DES has two attractions that assure its widespread

use over the next few years. First, with its 168-bit key length, it overcomes the

vulnerability to brute-force attack of DES. Second, the underlying encryption

algorithm in 3DES is the same as in DES. This algorithm has been subjected

to more scrutiny than any other encryption algorithm over a longer period of

time, and no effective cryptanalytic attack based on the algorithm rather than

brute force has been found. Accordingly, there is a high level of confidence

that 3DES is very resistant to cryptanalysis. If security were the only

consideration, then 3DES would be an appropriate choice for a standardized

encryption algorithm for decades to come.

The principal drawback of 3DES is that the algorithm is relatively sluggish

in software. The original DES was designed for mid-1970s hardware

implementation and does not produce efficient software code. 3DES, which

has three times as many rounds as DES, is correspondingly slower. A

secondary drawback is that both DES and 3DES use a 64-bit block size. For

reasons of both efficiency and security, a larger block size is desirable.

Because of these drawbacks, 3DES is not a reasonable candidate for long- term

use. As a replacement, NIST in 1997 issued a call for proposals for a new

Advanced Encryption Standard (AES), which should have a security strength

equal to or better than 3DES and significantly improved efficiency. In addition

to these general requirements, NIST specified that AES must be a symmetric

block cipher with a block length of 128 bits and support for key lengths of 128,

192, and 256 bits.

In a first round of evaluation, 15 proposed algorithms were accepted. A second

round narrowed the field to 5 algorithms. NIST completed its evaluation

process and published a final standard (FIPS PUB 197) in November of 2001.

NIST selected Rijndael as the proposed AES algorithm. The two researchers

who developed and submitted Rijndael for the AES are both cryptographers

from Belgium: Dr. Joan Daemen and Dr. Vincent Rijmen.

Ultimately, AES is intended to replace 3DES, but this process will take a

number of years. NIST anticipates that 3DES will remain an approved

algorithm (for U.S. government use) for the foreseeable future.

AES Evaluation

It is worth examining the criteria used by NIST to evaluate potential

candidates. These criteria span the range of concerns for the practical

application of modern symmetric block ciphers. In fact, two set of criteria

evolved. When NIST issued its original request for candidate algorithm

nominations in 1997 , the request stated that candidate algorithms would be

compared based on the factors shown in Table 5.1 (ranked in descending

order of relative importance). The three categories of criteria were as

follows:

• Security: This refers to the effort required to cryptanalyze an

algorithm. The emphasis in the evaluation was on the practicality of

the attack. Because the minimum key size for AES is 128 bits, brute-

force attacks with current and projected technology were considered

impractical. Therefore, the emphasis, with respect to this point, is

cryptanalysis other than a brute-force attack.

Cost: NIST intends AES to be practical in a wide range of

applications. Accordingly, AES must have high computational

efficiency, so as to be usable in high-speed applications, such as

broadband links.

• Algorithm and implementation characteristics: This category includes

a variety of considerations, including flexibility; suitability for a

variety of hardware and software implementations; and simplicity,

which will make an analysis of security more straightforward.

Table 5.1. NIST Evaluation Criteria for AES (September 12, 1997)

SECURITY

• Actual security: compared to other submitted algorithms (at the same key and

block size).

• Randomness: the extent to which the algorithm output is indistinguishable from a

random permutation on the input block.

• Soundness: of the mathematical basis for the algorithm's security.

• Other security factors: raised by the public during the evaluation process,

including any attacks which demonstrate that the actual security of the algorithm

is less than the strength claimed by the submitter.

COST

• Licensing requirements: NIST intends that when the AES is issued, the

algorithm(s) specified in the AES shall be available on a worldwide, non-

exclusive, royalty-free basis.

• Computational efficiency: The evaluation of computational efficiency will be

applicable to both hardware and software implementations. Round 1 analysis by

NIST will focus primarily on software implementations and specifically on one

key-block size combination (128-128); more attention will be paid to hardware

implementations and other supported key-block size combinations during Round

2 analysis. Computational efficiency essentially refers to the speed of the

algorithm. Public comments on each algorithm's efficiency (particularly for

various platforms and applications) will also be taken into consideration by NIST.

• Memory requirements: The memory required to implement a candidate

algorithmfor both hardware and software implementations of the algorithmwill

also be considered during the evaluation process. Round 1 analysis by NIST will

focus primarily on software implementations; more attention will be paid to

hardware implementations during Round 2. Memory requirements will include

such factors as gate counts for hardware implementations, and code size and

RAM requirements for software implementations.

ALGORITHM AND IMPLEMENTATION CHARACTERISTICS

• Flexibility: Candidate algorithms with greater flexibility will meet the needs of

Table 5.1. NIST Evaluation Criteria for AES (September 12, 1997)

SECURITY

more users than less flexible ones, and therefore, inter alia, are preferable.

However, some extremes of functionality are of little practical application (e.g.,

extremely short key lengths); for those cases, preference will not be given. Some

examples of flexibility may include (but are not limited to) the following:

a. The algorithm can accommodate additional key- and block-sizes (e.g., 64-

bit block sizes, key sizes other than those specified in the Minimum

Acceptability Requirements section, [e.g., keys between 128 and 256 that

are multiples of 32 bits, etc.])

b. The algorithm can be implemented securely and efficiently in a wide

variety of platforms and applications (e.g., 8-bit processors, ATM

networks, voice & satellite communications, HDTV, B-ISDN, etc.).

c. The algorithm can be implemented as a stream cipher, message

authentication code (MAC) generator, pseudorandom number generator,

hashing algorithm, etc.
• Hardware and software suitability: A candidate algorithm shall not be restrictive

in the sense that it can only be implemented in hardware. If one can also

implement the algorithm efficiently in firmware, then this will be an advantage in

the area of flexibility.

• Simplicity: A candidate algorithm shall be judged according to relative simplicity

of design.

Using these criteria, the initial field of 21 candidate algorithms was reduced

first to 15 candidates and then to 5 candidates. By the time that a final

evaluation had been done the evaluation criteria, as described in , had

evolved. The following criteria were used in the final evaluation:

• General security: To assess general security, NIST relied on the public

security analysis conducted by the cryptographic community. During

the course of the three-year evaluation process, a number of

cryptographers published their analyses of the strengths and weaknesses

of the various candidates. There was particular emphasis on analyzing

the candidates with respect to known attacks, such as differential and

linear cryptanalysis. However, compared to the analysis of DES,

the amount of time and the number of cryptographers devoted

to analyzing Rijndael are quite limited. Now that a single AES cipher

has been chosen, we can expect to see a more extensive security analysis

by the cryptographic community.

• Software implementations: The principal concerns in this category are

execution speed, performance across a variety of platforms, and

variation of speed with key size.

• Restricted-space environments: In some applications, such as smart

cards, relatively small amounts of random-access memory (RAM)

and/or read-only memory (ROM) are available for such purposes as code

storage (generally in ROM); representation of data objects such as S-

boxes (which could be stored in ROM or RAM, depending on whether

pre-computation or Boolean representation is used); and subkey storage

(in RAM).
• Hardware implementations: Like software, hardware implementations

can be optimized for speed or for size. However, in the case of
hardware, size translates much more directly into cost than is usually the
case for software implementations. Doubling the size of an
encryption program may make little difference on a general-purpose
computer with a large memory, but doubling the area used in a hardware
device typically more than doubles the cost of the device.

• Attacks on implementations: The criterion of general security,
discussed in the first bullet, is concerned with cryptanalytic attacks
that exploit mathematical properties of the algorithms. There is
another class of attacks that use physical measurements conducted
during algorithm execution to gather information about quantities
such as keys. Such attacks exploit a combination of intrinsic algorithm
characteristics and implementation-dependent features. Examples of

such attacks are timing attacks and power analysis. The basic idea behind

power analysis is the observation that the power consumed by a smart

card at any particular time during the cryptographic operation is related

to the instruction being executed and to the data being processed. For

example, multiplication consumes more power than addition, and

writing 1s consumes more power than writing 0s.

Encryption versus decryption: This criterion deals with several issues

related to considerations of both encryption and decryption. If the

encryption and decryption algorithms differ, then extra space is

needed for the decryption. Also, whether the two algorithms are the same

or not, there may be timing differences between encryption and

decryption.

• Key agility: Key agility refers to the ability to change keys quickly

and with a minimum of resources. This includes both subkey

computation and the ability to switch between different ongoing

security associations when subkeys may already be available.

• Other versatility and flexibility: indicates two areas that fall into this

category. Parameter flexibility includes ease of support for other key and

block sizes and ease of increasing the number of rounds in order to

cope with newly discovered attacks. Implementation flexibility refers

to the possibility of optimizing cipher elements for particular

environments.

• Potential for instruction-level parallelism: This criterion refers to the

ability to exploit ILP features in current and future processors.

Table 5.2 shows the assessment that NIST provided for Rijndael based on

these criteria.

Table 5.2. Final NIST Evaluation of Rijndael (October 2, 2000)

General Security

Rijndael has no known security attacks. Rijndael uses S-boxes as nonlinear components.

Rijndael appears to have an adequate security margin, but has received some criticism

suggesting that its mathematical structure may lead to attacks. On the other hand, the simple

structure may have facilitated its security analysis during the timeframe of the AES

development process.

Software Implementations

Rijndael performs encryption and decryption very well across a variety of platforms,

including 8-bit and 64-bit platforms, and DSPs. However, there is a decrease in performance

with the higher key sizes because of the increased number of rounds that are performed.

Rijndael's high inherent parallelism facilitates the efficient use of processor resources,

resulting in very good software performance even when implemented in a mode not

capable of interleaving. Rijndael's key setup time is fast.

Restricted-Space Environments

In general, Rijndael is very well suited for restricted-space environments where either

encryption or decryption is implemented (but not both). It has very low RAM and ROM

requirements. A drawback is that ROM requirements will increase if both encryption and

decryption are implemented simultaneously, although it appears to remain suitable for

these environments. The key schedule for decryption is separate from encryption.

Hardware Implementations

Rijndael has the highest throughput of any of the finalists for feedback modes and second

Table 5.2. Final NIST Evaluation of Rijndael (October 2, 2000)

General Security

highest for non-feedback modes. For the 192 and 256-bit key sizes, throughput falls in

standard and unrolled implementations because of the additional number of rounds. For

fully pipelined implementations, the area requirement increases, but the throughput is

unaffected.

Attacks on Implementations

The operations used by Rijndael are among the easiest to defend against power and

timing attacks. The use of masking techniques to provide Rijndael with some defense

against these attacks does not cause significant performance degradation relative to the other

finalists, and its RAM requirement remains reasonable. Rijndael appears to gain a major

speed advantage over its competitors when such protections are considered.

Encryption vs. Decryption

The encryption and decryption functions in Rijndael differ. One FPGA study reports that

the implementation of both encryption and decryption takes about 60% more space than

the implementation of encryption alone. Rijndael's speed does not vary significantly

between encryption and decryption, although the key setup performance is slower for

decryption than for encryption.

Key Agility

Rijndael supports on-the-fly subkey computation for encryption. Rijndael requires a one-

time execution of the key schedule to generate all subkeys prior to the first decryption

with a specific key. This places a slight resource burden on the key agility of Rijndael.

Other Versatility and Flexibility

Rijndael fully supports block sizes and key sizes of 128 bits, 192 bits and 256 bits, in any

combination. In principle, the Rijndael structure can accommodate any block sizes and

key sizes that are multiples of 32, as well as changes in the number of rounds that are

specified.

Potential for Instruction-Level Parallelism

Rijndael has an excellent potential for parallelism for a single block encryption.

Simplified AES

Simplified AES (S-AES) was developed by Professor Edward Schaefer of

Santa Clara University and several of his students . It is an educational rather

than a secure encryption algorithm. It has similar properties and structure to

AES with much smaller parameters. The reader might find it useful to work

through an example by hand while following the discussion in this appendix.

A good grasp of S-AES will make it easier for the student to appreciate the

structure and workings of AES.

Overview

Figure 5.8 illustrates the overall structure of S-AES. The encryption

algorithm takes a 16-bit block of plaintext as input and a 16-bit key and

produces a 16-bit block of ciphertext as output. The S-AES decryption

algorithm takes an 16-bit block of ciphertext and the same 16-bit key used to

produce that ciphertext as input and produces the original 16-bit block of

plaintext as output.

Figure 5.8. S-AES Encryption and Decryption

(This item is displayed on page 165 in the print version)

The encryption algorithm involves the use of four different functions, or
transformations: add key (AK) nibble substitution (NS), shift row (SR), and
mix column (MC), whose operation is explained subsequently.

We can concisely express the encryption algorithm as a composition of

functions:

Definition: If f and g are two functions, then the function F with the equation

y= F(x) = g[f(x)] is called the composition of f and g and is denoted as F = g
º f.

AK2 º SR º NS º AK1 º MC º SR º NS º AK0

so that AK0 is applied first.

The encryption algorithm is organized into three rounds. Round 0 is simply

an add key round; round 1 is a full round of four functions; and round 2

contains only 3 functions. Each round includes the add key function, which

makes use of 16 bits of key. The initial 16-bit key is expanded to 48 bits, so

that each round uses a distinct 16-bit round key.

Each function operates on a 16-bit state, treated as a 2 x 2 matrix of nibbles,

where one nibble equals 4 bits. The initial value of the state matrix is the 16-

bit plaintext; the state matrix is modified by each subsequent function in the

encryption process, producing after the last function the 16-bit ciphertext. As

Figure 5.9a shows, the ordering of nibbles within the matrix is by column.

So, for example, the first eight bits of a 16-bit plaintext input to the

encryption cipher occupy the first column of the matrix, and the second eight

bits occupy the second column. The 16-bit key is similarly organized, but it

is somewhat more convenient to view the key as two bytes rather than four
nibbles (Figure 5.9b). The expanded key of 48 bits is treated as three round
keys, whose bits are labeled as follows: K0 = k0...k15; K1 = k16...k31; K2 =

k32...k47.

Figure 5.9. S-AES Data Structures

Figure 5.10 shows the essential elements of a full round of S-AES.

Figure 5.10. S-AES Encryption Round

(This item is displayed on page 167 in the print version)

Decryption is also shown in Figure 5.8 and is essentially the reverse of

encryption:

AK0 º INS º ISR º IMC º AK1 º INS º ISR º AK2

in which three of the functions have a corresponding inverse function:

inverse nibble substitution (INS), inverse shift row (ISR), and inverse mix

column (IMC).

S-AES Encryption and Decryption

We now look at the individual functions that are part of the encryption

algorithm.

Add Key

The add key function consists of the bitwise XOR of the 16-bit state matrix

and the 16-bit round key. Figure 5.11 depicts this as a columnwise operation,

but it can also be viewed as a nibble-wise or bitwise operation. The
following is an example:

Figure 5.11. S-AES Transformations

[View full size image]

The inverse of the add key function is identical to the add key function,

because the XOR operation is its own inverse.

Nibble Substitution

The nibble substitution function is a simple table lookup (Figure 5.11). AES

defines a 4 x 4 matrix of nibble values, called an S-box (Table 5.5a), that

contains a permutation of all possible 4-bit values. Each individual nibble of

the state matrix is mapped into a new nibble in the following way: The

leftmost 2 bits of the nibble are used as a row value and the rightmost 2 bits

are used as a column value. These row and column values serve as indexes

into the S-box to select a unique 4-bit output value. For example, the

hexadecimal value A references row 2, column 2 of the S-box, which

contains the value 0. Accordingly, the value A is mapped into the value 0.

Table 5.5. S-AES S-Boxes

Note: Hexadecimal numbers in shaded boxes; binary numbers in unshaded boxes.

Here is an example of the nibble substitution transformation:

The inverse nibble substitution function makes use of the inverse S-box

shown in Table 5.5b. Note, for example, that the input 0 produces the output

A, and the input A to the S-box produces 0.

Shift Row

The shift row function performs a one-nibble circular shift of the second row

of the state matrix; the first row is not altered (Figure 5.11). The following is

an example:

The inverse shift row function is identical to the shift row function, because

it shifts the second row back to its original position.

Mix Column

The mix column function operates on each column individually. Each nibble

of a column is mapped into a new value that is a function of both nibbles in

that column. The transformation can be defined by the following matrix

multiplication on the state matrix (Figure 5.11):

Performing the matrix multiplication, we get:

S'0,0 = S0,0 ⊕ (4 · S1,0)

S'1,0 = (4 · S0,0) ⊕S1,0

S'0,1 = S0,1 ⊕ (4 · S1,1)

S'1,1 = (4 · S0,1) ⊕S1,1

Where arithmetic is performed in GF(2
4
), and the symbol · refers to

multiplication in GF(2
4
). Appendix E provides the addition and

multiplication tables. The following is an example:

The inverse mix column function is defined as follows:

We demonstrate that we have indeed defined the inverse in the following

fashion:

The preceding matrix multiplication makes use of the following results in

GF(2
4
): 9 + (2 · 4) = 9 + 8 = 1; (9 · 4) + 2 = 2 + 2 = 0. These operations can

be verified using the arithmetic tables in Appendix E or by polynomial
arithmetic.

The mix column function is the most difficult to visualize. Accordingly, we

provide an additional perspective on it in Appendix E.

Key Expansion

For key expansion, the 16 bits of the initial key are grouped into a row of

two 8-bit words. Figure 5.12 shows the expansion into 6 words, by the

calculation of 4 new words from the initial 2 words. The algorithm is as

follows:

w2 = w0 ⊕g(w1) = w0 ⊕RCON(1) ⊕SubNib(RotNib(w1))

w3 = w2 ⊕ w1

w4 = w2 ⊕ g(w3) = w2 ⊕RCON(2) ⊕SubNib(RotNib(w3))

w5 = w4 ⊕w3

Figure 5.12. S-AES Key Expansion

(This item is displayed on page 171 in the print version)

RCON is a round constant, defined as follows: RC[i] = x
i + 2

, so that RC[1] =

x
3

= 1000 and RC[2] = x
4

mod (x
4

+ x + 1) = x + 1 = 0011. RC[i] forms the
leftmost nibble of a byte, with the rightmost nibble being all zeros. Thus,
RCON(1) = 10000000 and RCON(2) = 00110000.

For example, suppose the key is 2D55 = 0010 1101 0101 0101 = w0w1. Then

w2 = 00101101 ⊕10000000 ⊕SubNib(01010101)

= 00101101 ⊕10000000 ⊕00010001 = 10111100

w3 = 10111100 ⊕01010101 = 11101001

w4 = 10111110 ⊕00110000 ⊕SubNib(10011110)

= 10111100 ⊕00110000 ⊕00101111 = 10100011

w5 = 10100011 ⊕11101001 = 01001010

The S-Box

The S-box is constructed as follows:

Initialize the S-box with the nibble values in ascending sequence row

by row. The first row contains the hexadecimal values 0, 1, 2, 3; the

second row contains 4, 5, 6, 7; and so on. Thus, the value of the nibble

at row i, column j is 4i + j.

1. Treat each nibble as an element of the finite field GF(2
4
) modulo x

4

+x + 1. Each nibble a0a1a2a3 represents a polynomial of degree 3.

2. Map each byte in the S-box to its multiplicative inverse in the finite

field GF(2
4
) modulo x

4
+ x + 1; the value 0 is mapped to itself.

3. Consider that each byte in the S-box consists of 4 bits labeled (b0, b1,
b2, b3). Apply the following transformation to each bit of each byte in
the S-box: The AES standard depicts this transformation in matrix
form as follows:

The prime (') indicates that the variable is to be updated by the value

on the right. Remember that addition and multiplication are being

calculated modulo 2.

Table 5.5a shows the resulting S-box. This is a nonlinear, invertible matrix.

The inverse S-box is shown in Table 5.5b.

S-AES Structure

We can now examine several aspects of interest concerning the structure of

AES. First, note that the encryption and decryption algorithms begin and end

with the add key function. Any other function, at the beginning or end, is

easily reversible without knowledge of the key and so would add no security

but just a processing overhead. Thus, there is a round 0 consisting of only

the add key function.

The second point to note is that round 2 does not include the mix column

function. The explanation for this in fact relates to a third observation, which

is that although the decryption algorithm is the reverse of the encryption

algorithm, as clearly seen in Figure 5.8, it does not follow the same sequence

of functions. Thus

Encryption: AK2 º SR º NS º AK1 º MC º SR º NS º AK0

Decryption: AK0 º INS º ISR º IMC º AK1 º INS º ISR º AK2

From an implementation point of view, it would be desirable to have the

decryption function follow the same function sequence as encryption. This

allows the decryption algorithm to be implemented in the same way as the

encryption algorithm, creating opportunities for efficiency.

Note that if we were able to interchange the second and third functions, the

fourth and fifth functions, and the sixth and seventh functions in the

decryption sequence, we would have the same structure as the encryption

algorithm. Let's see if this is possible. First, consider the interchange of INS

and ISR. Given a state N consisting of the nibbles (N0, N1, N2, N3) the

transformation INS(ISR(N)) proceeds as follows:

Where IS refers to the inverse S-Box. Reversing the operations, the

transformation ISR(INS(N) proceeds as follows:

which is the same result. Thus, INS(ISR(N)) = ISR(INS(N)).

Now consider the operation of inverse mix column followed by add key:
IMC(AK1(N)) where the round key K1 consists of the nibbles (k0,0, k1,0, k0,1,

k1,1) Then:

All of the above steps make use of the properties of finite field arithmetic.

The result is that IMC(AK1(N)) = IMC(K1 ⊕ IMC(N). Now let us define the
inverse round key for round 1 to be IMC(K1) and the inverse add key
operation IAK1 to be the bitwise XOR of the inverse round key with the state
vector. Then we have IMC(AK1(N)) = IAK1(IMC(N)). As a result, we can
write the following:

Encryption: AK2 º SR º NS º AK1 º MC º SR º NS º AK0

Decryption: AK0 º INS º ISR º IMC º AK1 º INS º ISR º AK2

Decryption: AK0 º ISR º INS º AIMC(K1) º IMC º ISR º INS º AK2

Both encryption and decryption now follow the same sequence. Note that

this derivation would not work as effectively if round 2 of the encryption

algorithm included the MC function. In that case, we would have

Encryption: AK2 º MC º SR º NS º AK1 º MC º SR º NS º AK0

Decryption: AK0 º INS º ISR º IMC º AK1 º INS º ISR º IMC º AK2

There is now no way to interchange pairs of operations in the decryption

algorithm so as to achieve the same structure as the encryption algorithm.

The AES

Cipher

The Rijndael proposal for AES defined a cipher in which the block length

and the key length can be independently specified to be 128, 192, or 256

bits. The AES specification uses the same three key size alternatives but

limits the block length to 128 bits. A number of AES parameters depend on the

key length (Table 5.3). In the description of this section, we assume a key

length of 128 bits, which is likely to be the one most commonly implemented.

Table 5.3. AES Parameters

Key size (words/bytes/bits) 4/16/128 6/24/192 8/32/256

Plaintext block size (words/bytes/bits) 4/16/128 4/16/128 4/16/128

Number of rounds 10 12 14

Round key size (words/bytes/bits) 4/16/128 4/16/128 4/16/128

Expanded key size (words/bytes) 44/176 52/208 60/240

Rijndael was designed to have the following characteristics:

• Resistance against all known attacks

• Speed and code compactness on a wide range of platforms

• Design simplicity

Figure 5.1 shows the overall structure of AES. The input to the encryption

and decryption algorithms is a single 128-bit block. In FIPS PUB 197, this

block is depicted as a square matrix of bytes. This block is copied into the

State array, which is modified at each stage of encryption or decryption.

After the final stage, State is copied to an output matrix. These operations

are depicted in Figure 5.2a. Similarly, the 128-bit key is depicted as a square

matrix of bytes. This key is then expanded into an array of key schedule words;

each word is four bytes and the total key schedule is 44 words for the

128-bit key (Figure 5.2b). Note that the ordering of bytes within a matrix is

by column. So, for example, the first four bytes of a 128-bit plaintext input

to the encryption cipher occupy the first column of the in matrix, the second

four bytes occupy the second column, and so on. Similarly, the first four

bytes of the expanded key, which form a word, occupy the first column of

the w matrix.

Figure 5.1. AES Encryption and Decryption

Figure 5.2. AES Data Structures

Before delving into details, we can make several comments about the overall

AES structure:

1. One noteworthy feature of this structure is that it is not a Feistel

structure. Recall that in the classic Feistel structure, half of the data

block is used to modify the other half of the data block, and then the

halves are swapped. Two of the AES finalists, including Rijndael, do

not use a Feistel structure but process the entire data block in parallel

during each round using substitutions and permutation.

2. The key that is provided as input is expanded into an array of forty-

four 32-bit words, w[i]. Four distinct words (128 bits) serve as a round

key for each round; these are indicated in Figure 5.1.

3. Four different stages are used, one of permutation and three of

substitution:
o Substitute bytes: Uses an S-box to perform a byte-by-byte

substitution of the block

o ShiftRows: A simple permutation
o MixColumns: A substitution that makes use of arithmetic over

GF(2
8
)

o AddRoundKey: A simple bitwise XOR of the current block

with a portion of the expanded key

4. The structure is quite simple. For both encryption and decryption, the

cipher begins with an AddRoundKey stage, followed by nine rounds

that each includes all four stages, followed by a tenth round of three

stages. Figure 5.3 depicts the structure of a full encryption round.

Figure 5.3. AES Encryption Round

(This item is displayed on page 144 in the print version)

5. Only the AddRoundKey stage makes use of the key. For this reason,

the cipher begins and ends with an AddRoundKey stage. Any other

stage, applied at the beginning or end, is reversible without knowledge

of the key and so would add no security.

6. The AddRoundKey stage is, in effect, a form of Vernam cipher and by

itself would not be formidable. The other three stages together provide

confusion, diffusion, and nonlinearity, but by themselves would

provide no security because they do not use the key. We can view the

cipher as alternating operations of XOR encryption (AddRoundKey)

of a block, followed by scrambling of the block (the other three

stages), followed by XOR encryption, and so on. This scheme is both

efficient and highly secure.
7. Each stage is easily reversible. For the Substitute Byte, ShiftRows,

and MixColumns stages, an inverse function is used in the decryption
algorithm. For the AddRoundKey stage, the inverse is achieved by

XORing the same round key to the block, using the result that A ⊕A

⊕B = B.

8. As with most block ciphers, the decryption algorithm makes use of the

expanded key in reverse order. However, the decryption algorithm is not

identical to the encryption algorithm. This is a consequence of the

particular structure of AES.

Once it is established that all four stages are reversible, it is easy to verify

that decryption does recover the plaintext. Figure 5.1 lays out

encryption and decryption going in opposite vertical directions. At

each horizontal point (e.g., the dashed line in the figure), State is the

same for both encryption and decryption.

9. The final round of both encryption and decryption consists of only

three stages. Again, this is a consequence of the particular structure of

AES and is required to make the cipher reversible.

We now turn to a discussion of each of the four stages used in AES. For

each stage, we describe the forward (encryption) algorithm, the inverse

(decryption) algorithm, and the rationale for the stage. This is followed by a

discussion of key expansion.

AES uses arithmetic in the finite field GF(2
8
), with the irreducible

polynomial m(x) = x
8

+ x
4

+ x
3

+ x + 1. The developers of Rijndael give as
their motivation for selecting this one of the 30 possible irreducible
polynomials of degree 8 that it is the first one on the list .

Substitute Bytes Transformation

Forward and Inverse Transformations

The forward substitute byte transformation, called SubBytes, is a simple

table lookup (Figure 5.4a). AES defines a 16 x 16 matrix of byte values, called

an S-box (Table 5.4a), that contains a permutation of all possible 256

8-bit values. Each individual byte of State is mapped into a new byte in the

following way: The leftmost 4 bits of the byte are used as a row value and

the rightmost 4 bits are used as a column value. These row and column

values serve as indexes into the S-box to select a unique 8-bit output value. For

example, the hexadecimal value {95} references row 9, column 5 of the S-

box, which contains the value {2A}. Accordingly, the value {95} is

mapped into the value {2A}.

In FIPS PUB 197, a hexadecimal number is indicated by enclosing it in

curly brackets. We use that convention in this chapter.

Figure 5.4. AES Byte-Level Operations

(This item is displayed on page 145 in the print version)

Table 5.4. AES S-Boxes

(This item is displayed on page 146 in the print version)

Here is an example of the SubBytes transformation:

The S-box is constructed in the following fashion:

1. Initialize the S-box with the byte values in ascending sequence row by

row. The first row contains {00}, {01}, {02},.... {0F}; the second row

contains {10}, {11}, etc.; and so on. Thus, the value of the byte at row

x, column y is {xy}.
2. Map each byte in the S-box to its multiplicative inverse in the finite

field GF(2
8
); the value {00} is mapped to itself.

3. Consider that each byte in the S-box consists of 8 bits labeled (b7, b6,
b5, b4, b3, b2, b1, b0). Apply the following transformation to each bit of
each byte in the S-box:

Equation 5-1

where ci is the ith bit of byte c with the value {63}; that is,

(c7c6c5c4c3c2c1c0) = (01100011). The prime (') indicates that the

variable is to be updated by the value on the right. The AES standard
depicts this transformation in matrix form as follows:

Equation 5-2

Equation (5.2) has to be interpreted carefully. In ordinary matrix
multiplication,

[5]
each element in the product matrix is the sum of products

of the elements or one row and one column. In this case, each element in the
product matrix is the bitwise XOR of products of elements of one row and
one column. Further, the final addition shown in Equation (5.2) is a bitwise
XOR.

As an example, consider the input value {95}. The multiplicative inverse in

GF(2
8
) is {95}

1
= {8A}, which is 10001010 in binary. Using Equation (5.2),

The result is {2A}, which should appear in row {09} column {05} of the S-

box. This is verified by checking Table 5.4a.

The inverse substitute byte transformation, called InvSubBytes, makes use

of the inverse S-box shown in Table 5.4b. Note, for example, that the input

{2A} produces the output {95} and the input {95} to the S-box produces

{2A}. The inverse S-box is constructed by applying the inverse of the
transformation in Equation (5.1) followed by taking the multiplicative

inverse in GF(2
8
). The inverse transformation is:

bi' = b(i + 2) mod 8 ⊕b(i + 5) mod 8 ⊕b(i + 7) mod 8 ⊕di

where byte d = {05}, or 00000101. We can depict this transformation as

follows:

To see that InvSubBytes is the inverse of SubBytes, label the matrices in

SubBytes and InvSubBytes as X and Y, respectively, and the vector versions

of constants c and d as C and D, respectively. For some 8-bit vector B,

Equation (5.2) becomes B' = XB ⊕C. We need to show that Y(XB ⊕C) ⊕D

= B. Multiply out, we must show YXB ⊕YC ⊕D = B. This becomes

We have demonstrated that YX equals the identity matrix, and the YC = D,

so that YC ⊕D equals the null vector.

Rationale

The S-box is designed to be resistant to known cryptanalytic attacks.

Specifically, the Rijndael developers sought a design that has a low correlation

between input bits and output bits, and the property that the output cannot

be described as a simple mathematical function of the input . In addition, the

constant in Equation (5.1) was chosen so that the S-box has no fixed points

[S-box(a) = a] and no "opposite fixed points" [S-box(a) = ā], where ā is the

bitwise complement of a.

Of course, the S-box must be invertible, that is, IS-box[S-box(a)] = a. However,

the S-box is not self-inverse in the sense that it is not true that S- box(a) = IS-

box(a). For example, [S-box({95}) = {2A}, but IS-box({95}) =

{AD}.

ShiftRows Transformation

Forward and Inverse Transformations

The forward shift row transformation, called ShiftRows, is depicted in

Figure 5.5a. The first row of State is not altered. For the second row, a 1-

byte circular left shift is performed. For the third row, a 2-byte circular left

shift is performed. For the fourth row, a 3-byte circular left shift is

performed. The following is an example of ShiftRows:

Figure 5.5. AES Row and Column Operations

The inverse shift row transformation, called InvShiftRows, performs the

circular shifts in the opposite direction for each of the last three rows, with a

one-byte circular right shift for the second row, and so on.

Rationale

The shift row transformation is more substantial than it may first appear.

This is because the State, as well as the cipher input and output, is treated as

an array of four 4-byte columns. Thus, on encryption, the first 4 bytes of the

plaintext are copied to the first column of State, and so on. Further, as will

be seen, the round key is applied to State column by column. Thus, a row

shift moves an individual byte from one column to another, which is a linear

distance of a multiple of 4 bytes. Also note that the transformation ensures

that the 4 bytes of one column are spread out to four different columns.

Figure 5.3 illustrates the effect.

MixColumns Transformation

Forward and Inverse Transformations

The forward mix column transformation, called MixColumns, operates on

each column individually. Each byte of a column is mapped into a new value

that is a function of all four bytes in that column. The transformation can be

defined by the following matrix multiplication on State (Figure 5.5b):

Equation 5-3

Each element in the product matrix is the sum of products of elements of one
row and one column. In this case, the individual additions and
multiplications are performed in GF(2

8
). The MixColumns transformation

on a single column j(0 ≤j ≤3) of State can be expressed as

We follow the convention of FIPS PUB 197 and use the symbol · to indicate

multiplication over the finite field GF(2
8
) and ⊕to indicate bitwise XOR,

which corresponds to addition in GF(28).

Equation 5-4

The following is an example of MixColumns:

Let us verify the first column of this example, in GF(2
8
), addition is the bitwise

XOR operation and that multiplication can be performed according to the

rule established in Equation (4.10). In particular, multiplication of a value

by x (i.e., by {02}) can be implemented as a 1-bit left shift followed by a

conditional bitwise XOR with (0001 1011) if the leftmost bit of the original

value (prior to the shift) is 1. Thus, to verify the MixColumns transformation

on the first column, we need to show that

({02} · {87}) ⊕ ({03} · {6E}) ⊕{46} ⊕{A6} = {47}

{87} ⊕ ({02} · {6E}) ⊕ ({03} · {46}) ⊕{A6} = {37}

{87} ⊕{6E} ⊕ ({02} · {46} ⊕ ({03} · {A6}) = {94}

({03} · {87}) ⊕{6E} ⊕{46} ⊕ ({02} · {A6} = {ED}

For the first equation, we have {02} · {87} = (0000 1110) ⊕ (0001 1011) =

(0001 0101); and {03} · {6E} = {6E} ⊕ ({02} · {6E}) = (0110 1110) ⊕

(1101 1100) = (1011 0010). Then

{02} · {87} = 0001 0101

{03} · {6E} = 1011 0010

{46} = 0100 0110

{A6} = 1010 0110

 0100 0111 = {47}

The other equations can be similarly verified.

The inverse mix column transformation, called InvMixColumns, is defined

by the following matrix multiplication:

Equation 5-5

It is not immediately clear that Equation (5.5) is the inverse of Equation

(5.3). We need to show that:

which is equivalent to showing that:

Equation 5-6

That is, the inverse transformation matrix times the forward transformation

matrix equals the identity matrix. To verify the first column of Equation

(5.6), we need to show that:

({0E} · {02}) ⊕{0B} ⊕{0D} ⊕ ({09} · {03}) = {01}

({09} · {02}) ⊕{0E} ⊕{0B} ⊕ ({0D} · {03}) = {00}

({0D} · {02}) ⊕{09} ⊕{0E} ⊕ ({0B} · {03}) = {00}

({0B} · {02}) ⊕{0D} ⊕{09} ⊕ ({0E} · {03}) = {00}

For the first equation, we have {0E} · {02}) ⊕00011100; and {09} · {03} =

{09} ⊕ ({09} · {02}) = 00001001 ⊕00010010 = 00011011. Then

{0E} · {02} = 00011100

{0B} = 00001011

{0D} = 00001101

{09} · {03} = 00011011

 00000001

The other equations can be similarly verified.

The AES document describes another way of characterizing the
MixColumns transformation, which is in terms of polynomial arithmetic. In the
standard, MixColumns is defined by considering each column of State to be a

four-term polynomial with coefficients in GF(2
8
). Each column is multiplied

modulo (x
4

+ 1) by the fixed polynomial a(x), given by

Equation 5-7

demonstrates that multiplication of each column of State by a(x) can be written

as the matrix multiplication of Equation (5.3). Similarly, it can be seen that

the transformation in Equation (5.5) corresponds to treating each column as

a four-term polynomial and multiplying each column by b(x), given by

Equation 5-8

It can readily be shown that b(x) = a
1

(x) mod (x
4

+ 1).

Rationale

The coefficients of the matrix in Equation (5.3) are based on a linear code

with maximal distance between code words, which ensures a good mixing

among the bytes of each column. The mix column transformation combined

with the shift row transformation ensures that after a few rounds, all output bits

depend on all input bits.

In addition, the choice of coefficients in MixColumns, which are all {01},

{02}, or {03}, was influenced by implementation considerations. As was

discussed, multiplication by these coefficients involves at most a shift and an

XOR. The coefficients in InvMixColumns are more formidable to

implement. However, encryption was deemed more important than

decryption for two reasons:

1. For the CFB and OFB cipher modes only encryption is used.

2. As with any block cipher, AES can be used to construct a message

authentication code (Part Two), and for this only encryption is used.

AddRoundKey Transformation

Forward and Inverse Transformations

In the forward add round key transformation, called AddRoundKey, the 128

bits of State are bitwise XORed with the 128 bits of the round key. As

shown in Figure 5.4b, the operation is viewed as a columnwise operation

between the 4 bytes of a State column and one word of the round key; it can

also be viewed as a byte-level operation. The following is an example of

AddRoundKey:

The first matrix is State, and the second matrix is the round key.

The inverse add round key transformation is identical to the forward add round

key transformation, because the XOR operation is its own inverse.

Rationale

The add round key transformation is as simple as possible and affects every bit

of State. The complexity of the round key expansion, plus the complexity of

the other stages of AES, ensure security.

AES Key Expansion

Key Expansion Algorithm

The AES key expansion algorithm takes as input a 4-word (16-byte) key and

produces a linear array of 44 words (176 bytes). This is sufficient to provide

a 4-word round key for the initial AddRoundKey stage and each of the 10

rounds of the cipher. The following pseudocode describes the expansion:

KeyExpansion (byte key[16], word w[44])

{

word temp

for (i = 0; i < 4; i++) w[i] = (key[4*i],

key[4*i+1],

key[4*i+2],

key[4*i+3]);

for (i = 4; i < 44; i++)

{

temp = w[i 1];

if (i mod 4 = 0) temp = SubWord (RotWord (temp))

⊕ Rcon[i/4];
w[i] = w[i4] ≈temp

}

}

The key is copied into the first four words of the expanded key. The

remainder of the expanded key is filled in four words at a time. Each

added word w[i] depends on the immediately preceding word, w[i 1],

and the word four positions back,w[i 4]. In three out of four cases, a

simple XOR is used. For a word whose position in the w array is a

multiple of 4, a more complex function is used. Figure 5.6 illustrates

the generation of the first eight words of the expanded key, using the

symbol g to represent that complex function. The function g consists

of the following subfunctions:

1. RotWord performs a one-byte circular left shift on a word. This means

that an input word [b0, b1, b2, b3] is transformed into [b1, b2, b3, b0].
2. SubWord performs a byte substitution on each byte of its input word,

using the S-box (Table 5.4a).

3. The result of steps 1 and 2 is XORed with a round constant, Rcon[j].

Figure 5.6. AES Key Expansion

The round constant is a word in which the three rightmost bytes are always

0. Thus the effect of an XOR of a word with Rcon is to only perform an

XOR on the leftmost byte of the word. The round constant is different for

each round and is defined as Rcon[j] = (RC[j], 0, 0, 0), with RC[1] = 1,

RC[j] = 2 · RC[j - 1] and with multiplication defined over the field GF(2
8
).

The values of RC[j] in hexadecimal are

j 1 2 3 4 5 6 7 8 9 10

RC[j] 01 02 04 08 10 20 40 80 1B 36

For example, suppose that the round key for round 8 is

EA D2 73 21 B5 8D BA D2 31 2B F5 60 7F 8D 29 2F

Then the first 4 bytes (first column) of the round key for round 9 are

calculated as follows:

i

(decima

l)

temp After

RotWor

d

After

SubWord

Rcon (9) After

XOR

with

Rcon

w[i 4] w[i] =

temp

⊕w[i 4]

36 7F8D29 8D292F 5DA515 1B0000 46A515 EAD273 AC7766F
2F 7F D2 00 D2 21 3

Rationale

The Rijndael developers designed the expansion key algorithm to be

resistant to known cryptanalytic attacks. The inclusion of a round-dependent

round constant eliminates the symmetry, or similarity, between the ways in

which round keys are generated in different rounds:

• Knowledge of a part of the cipher key or round key does not enable

calculation of many other round key bits

• An invertible transformation [i.e., knowledge of any Nk consecutive

words of the Expanded Key enables regeneration the entire expanded

key (Nk = key size in words)]

• Speed on a wide range of processors

• Usage of round constants to eliminate symmetries

• Diffusion of cipher key differences into the round keys; that is, each

key bit affects many round key bits
• Enough nonlinearity to prohibit the full determination of round key

differences from cipher key differences only

• Simplicity of description

The authors do not quantify the first point on the preceding list, but the idea

is that if you know less than Nk consecutive words of either the cipher key

or one of the round keys, then it is difficult to reconstruct the remaining

unknown bits. The fewer bits one knows, the more difficult it is to do the

reconstruction or to determine other bits in the key expansion.

Equivalent Inverse Cipher

As was mentioned, the AES decryption cipher is not identical to the encryption

cipher (Figure 5.1). That is, the sequence of transformations for decryption

differs from that for encryption, although the form of the key schedules for

encryption and decryption is the same. This has the disadvantage that two

separate software or firmware modules are needed for applications that require

both encryption and decryption. There is, however, an equivalent version of

the decryption algorithm that has the same structure as the encryption

algorithm. The equivalent version has the same sequence of transformations

as the encryption algorithm (with transformations replaced by their

inverses). To achieve this equivalence, a change in key schedule is needed.

Two separate changes are needed to bring the decryption structure in line

with the encryption structure. An encryption round has the structure

SubBytes, ShiftRows, MixColumns, AddRoundKey. The standard

decryption round has the structure InvShiftRows, InvSubBytes,

AddRoundKey, InvMixColumns. Thus, the first two stages of the decryption

round need to be interchanged, and the second two stages of the decryption

round need to be interchanged.

Interchanging InvShiftRows and InvSubBytes

InvShiftRows affects the sequence of bytes in State but does not alter byte

contents and does not depend on byte contents to perform its transformation.

InvSubBytes affects the contents of bytes in State but does not alter byte

sequence and does not depend on byte sequence to perform its

transformation. Thus, these two operations commute and can be

interchanged. For a given State Si,

InvShiftRows [InvSubBytes (Si)] = InvSubBytes [InvShiftRows (Si)]

Interchanging AddRoundKey and InvMixColumns

The transformations AddRoundKey and InvMixColumns do not alter the

sequence of bytes in State. If we view the key as a sequence of words, then

both AddRoundKey and InvMixColumns operate on State one column at a

time. These two operations are linear with respect to the column input. That

is, for a given State Si and a given round key wj:

InvMixColumns (Si ⊕wj) = [InvMixColumns (Si)] ⊕ [InvMixColumns (wj)]

To see this, suppose that the first column of State Si is the sequence (y0, y1,

y2, y3) and the first column of the round key wj is (k0, k1, k2, k3). Then we
need to show that

Let us demonstrate that for the first column entry. We need to show that:

[{0E} · (y0 ⊕k0)] ⊕ [{0B} · (y1 ⊕k1)] ⊕ [{0D} · (y2 ⊕k2)] ⊕ [{09} · (y3

⊕k3)]

= [{0E} · y0] ⊕ [{0B} · y1] ⊕ [{0D} · y2] ⊕ [{09} · y3]

⊕ [[{0E} · k0] ⊕] [{0B} · k1] ⊕ [{0D} · k2] ⊕ [{09} · k3]

This equation is valid by inspection. Thus, we can interchange

AddRoundKey and InvMixColumns, provided that we first apply

InvMixColumns to the round key. Note that we do not need to apply

InvMixColumns to the round key for the input to the first AddRoundKey

transformation (preceding the first round) nor to the last AddRoundKey

transformation (in round 10). This is because these two AddRoundKey

transformations are not interchanged with InvMixColumns to produce the

equivalent decryption algorithm.

Figure 5.7 illustrates the equivalent decryption algorithm.

Figure 5.7. Equivalent Inverse Cipher

(This item is displayed on page 158 in the print version)

Implementation Aspects

The Rijndael proposal provides some suggestions for efficient

implementation on 8-bit processors, typical for current smart cards, and on

32-bit processors, typical for PCs.

8-Bit Processor

AES can be implemented very efficiently on an 8-bit processor. AddRoundKey

is a bytewise XOR operation. ShiftRows is a simple byte shifting operation.

SubBytes operates at the byte level and only requires a table of 256 bytes.

The transformation MixColumns requires matrix multiplication in the field

GF(2
8
), which means that all operations are carried out on bytes.

MixColumns only requires multiplication by {02} and {03}, which, as we have
seen, involved simple shifts, conditional XORs, and XORs. This can be
implemented in a more efficient way that eliminates the shifts and
conditional XORs. Equation Set (5.4) shows the equations for the
MixColumns transformation on a single column. Using the identity {03} · x

= ({02} · x) ⊕x, we can rewrite Equation Set (5.4) as follows:

Equation 5-9

Equation Set (5.9) is verified by expanding and eliminating terms.

The multiplication by {02} involves a shift and a conditional XOR. Such an

implementation may be vulnerable to a timing attack of the sort described in

Section 3.4. To counter this attack and to increase processing efficiency at

the cost of some storage, the multiplication can be replaced by a table

lookup. Define the 256-byte table X2, such that X2[i] = {02} · i. Then

Equation Set (5.9) can be rewritten as

Tmp = so, j ⊕s1, j ⊕s2, j ⊕s3, j

s'0, j = s0, j ⊕Tmp ⊕X2[so, j ⊕s1, j]

s'1, c = s1, j ⊕Tmp ⊕X2[s1, j ⊕s2, j]

s'2, c = s2, j ⊕Tmp ⊕X2[s2, j ⊕s3, j]

s'3, j = s3, j ⊕Tmp ⊕X2[s3, j ⊕s0, j]

32-Bit Processor

The implementation described in the preceding subsection uses only 8-bit
operations. For a 32-bit processor, a more efficient implementation can be
achieved if operations are defined on 32-bit words. To show this, we first define
the four transformations of a round in algebraic form. Suppose we begin with
a State matrix consisting of elements ai,j and a round key matrix consisting of
elements ki,j. Then the transformations can be expressed as follows:

SubBytes bi,j = S[ai,j]

ShiftRows

MixColumns

AddRoundKey

In the ShiftRows equation, the column indices are taken mod 4. We can

combine all of these expressions into a single equation:

In the second equation, we are expressing the matrix multiplication as a

linear combination of vectors. We define four 256-word (1024-byte) tables

as follows:

Thus, each table takes as input a byte value and produces a column vector (a

32-bit word) that is a function of the S-box entry for that byte value. These

tables can be calculated in advance.

We can define a round function operating on a column in the following fashion:

As a result, an implementation based on the preceding equation requires

only four table lookups and four XORs per column per round, plus 4 Kbytes

to store the table. The developers of Rijndael believe that this compact,

efficient implementation was probably one of the most important factors in

the selection of Rijndael for AES.

t a few rounds.

Elliptic Curve Arithmetic

Most of the products and standards that use public-key cryptography for

encryption and digital signatures use RSA. As we have seen, the key length for

secure RSA use has increased over recent years, and this has put a

heavier processing load on applications using RSA. This burden has

ramifications, especially for electronic commerce sites that conduct large

numbers of secure transactions. Recently, a competing system has begun to

challenge RSA: elliptic curve cryptography (ECC). Already, ECC is

showing up in standardization efforts, including the IEEE P1363 Standard

for Public-Key Cryptography.

The principal attraction of ECC, compared to RSA, is that it appears to offer

equal security for a far smaller key size, thereby reducing processing overhead.

On the other hand, although the theory of ECC has been around for some

time, it is only recently that products have begun to appear and that there has

been sustained cryptanalytic interest in probing for weaknesses. Accordingly,

the confidence level in ECC is not yet as high as that in RSA.

ECC is fundamentally more difficult to explain than either RSA or Diffie-

Hellman, and a full mathematical description is beyond the scope of this

book. This section and the next give some background on elliptic curves and

ECC. We begin with a brief review of the concept of abelian group. Next,

we examine the concept of elliptic curves defined over the real numbers.

This is followed by a look at elliptic curves defined over finite fields.

Finally, we are able to examine elliptic curve ciphers.

Abelian Groups

that an abelian group G, sometimes denoted by {G, • }, is a set of elements with

a binary operation, denoted by •, that associates to each ordered pair (a, b) of

elements in G an element (a • b) in G, such that the following axioms are

obeyed:

The operator • is generic and can refer to addition, multiplication, or some other

mathematical operation.

(A1) Closure: If a and b belong to G, then a • b is also in G.

(A2) Associative: a • (b • c) = (a • b) • c for all a, b, c in G.

(A3) Identity

element:

There is an element e in G such that a • e = e • a = a for all a in G.

(A4) Inverse element: For each a in G there is an element a' in G such that a • a' = a' • a

= e.

(A5) Commutative: a • b = b • a for all a, b in G.

A number of public-key ciphers are based on the use of an abelian group.

For example, Diffie-Hellman key exchange involves multiplying pairs of

nonzero integers modulo a prime number q. Keys are generated by

exponentiation over the group, with exponentiation defined as repeated

multiplication. For example, a
k

mod q = mod q. To

attack Diffie-Hellman, the attacker must determine k given a and a
k
; this is

the discrete log problem.

For elliptic curve cryptography, an operation over elliptic curves, called

addition, is used. Multiplication is defined by repeated addition. For

example, , where the addition is performed over an

elliptic

curve. Cryptanalysis involves determining k given a and (a x k).

An elliptic curve is defined by an equation in two variables, with

coefficients. For cryptography, the variables and coefficients are restricted to

elements in a finite field, which results in the definition of a finite abelian

group. Before looking at this, we first look at elliptic curves in which the

variables and coefficients are real numbers. This case is perhaps easier to

visualize.

Elliptic Curves over Real Numbers

Elliptic curves are not ellipses. They are so named because they are

described by cubic equations, similar to those used for calculating the

circumference of an ellipse. In general, cubic equations for elliptic curves

take the form

y
2

+ axy + by = x
3

+ cx
2

+ dx + e

where a, b, c, d, and e are real numbers and x and y take on values in the real

numbers. For our purpose, it is sufficient to limit ourselves to equations of

the form

Equation 10-1

Such equations are said to be cubic, or of degree 3, because the highest

exponent they contain is a 3. Also included in the definition of an elliptic curve

is a single element denoted O and called the point at infinity or the zero

point, which we discuss subsequently. To plot such a curve, we need to

compute

For given values of a and b, the plot consists of positive and negative values

of y for each value of x. Thus each curve is symmetric about y = 0. Figure

10.9 shows two examples of elliptic curves. As you can see, the formula

sometimes produces weird-looking curves.

Figure 10.9. Example of Elliptic Curves

(This item is displayed on page 304 in the print version)

Now, consider the set of points E(a, b) consisting of all of the points (x, y)

that satisfy Equation (10.1) together with the element O. Using a different

value of the pair (a, b) results in a different set E(a, b). Using this

terminology, the two curves in Figure 10.9 depict the sets E(1,0) and E(1, 1),

respectively.

Geometric Description of Addition

It can be shown that a group can be defined based on the set E(a, b) for specific

values of a and b in Equation (10.1), provided the following condition

is met:

Equation 10-2

To define the group, we must define an operation, called addition and

denoted by +, for the set E(a, b), where a and b satisfy Equation (10.2). In

geometric terms, the rules for addition can be stated as follows: If three

points on an elliptic curve lie on a straight line, their sum is O. From this

definition, we can define the rules of addition over an elliptic curve:

1. O serves as the additive identity. Thus O = O; for any point P on the

elliptic curve, P + O = P. In what follows, we assume P ≠ O and Q ≠

O.

2. The negative of a point P is the point with the same x coordinate but

the negative of the y coordinate; that is, if P = (x, y), then P = (x, y).

Note that these two points can be joined by a vertical line. Note that P

+ (P) = P P = O.

3. To add two points P and Q with different x coordinates, draw a

straight line between them and find the third point of intersection R. It

is easily seen that there is a unique point R that is the point of intersection

(unless the line is tangent to the curve at either P or Q, in which case we

take R = P or R = Q, respectively). To form a group structure, we need

to define addition on these three points as follows: P + Q = R. That

is, we define P + Q to be the mirror image (with respect to the x

axis) of the third point of intersection. Figure 10.9 illustrates this

construction.

4. The geometric interpretation of the preceding item also applies to two

points, P and P, with the same x coordinate. The points are joined by a

vertical line, which can be viewed as also intersecting the curve at the

infinity point. We therefore have P + (P) = O, consistent with item

(2).

5. To double a point Q, draw the tangent line and find the other point of

intersection S. Then Q + Q = 2Q = S.

With the preceding list of rules, it can be shown that the set E(a, b) is an

abelian group.

Algebraic Description of Addition

In this subsection we present some results that enable calculation of
additions over elliptic curves. For two distinct points P = (xP, yP) and Q =

(xQ, yP) that are not negatives of each other, the slope of the line l that joins

them is ∆ = (yQ yP). There is exactly one other point where l intersects the

elliptic curve, and that is the negative of the sum of P and Q. After some
algebraic manipulation, we can express the sum R = P + Q as follows:

Equation 10-3

We also need to be able to add a point to itself: P + P = 2P = R. When yP ≠
0, the expressions are

Equation 10-4

Elliptic Curves over Zp

Elliptic curve cryptography makes use of elliptic curves in which the
variables and coefficients are all restricted to elements of a finite field. Two
families of elliptic curves are used in cryptographic applications: prime

curves over Zp and binary curves over GF (2
m

). For a prime curve over Zp,

we use a cubic equation in which the variables and coefficients all take on
values in the set of integers from 0 through p 1 and in which calculations are

performed modulo p. For a binary curve defined over GF(2
m

), the variables

and coefficients all take on values in GF(2
n
) and in calculations are

performed over GF(2
n
). points out that prime curves are best for software

applications, because the extended bit-fiddling operations needed by binary
curves are not required; and that binary curves are best for hardware
applications, where it takes remarkably few logic gates to create a powerful,
fast cryptosystem. We examine these two families in this section and the
next.

There is no obvious geometric interpretation of elliptic curve arithmetic over

finite fields. The algebraic interpretation used for elliptic curve arithmetic

over real numbers does readily carry over, and this is the approach we take.

For elliptic curves over Zp, as with real numbers, we limit ourselves to

equations of the form of Equation (10.1), but in this case with coefficients
and variables limited to Zp:

Equation 10-5

For example, Equation (10.5) is satisfied for a = 1, b = 1, x = 9, y = 9, y = 7,

p = 23:

7
2

mod 23 = (9
3

+ 9 + 1) mod 23

49 mod 23 = 739 mod 23

3 = 3

Now consider the set Ep (a, b) consisting of all pairs of integers (x, y) that

satisfy Equation (10.5), together with a point at infinity O. The coefficients a
and b and the variables x and y are all elements of Zp.

For example, let p = 23 and consider the elliptic curve y
2

= x
3

+ x + 1. In this

case, a = b = 1. Note that this equation is the same as that of Figure 10.9b.

The figure shows a continuous curve with all of the real points that satisfy

the equation. For the set E23(1, 1), we are only interested in the nonnegative

integers in the quadrant from (0, 0) through (p 1, p 1) that satisfy the

equation mod p. Table 10.1 lists the points (other than O) that are part of

E23(1,1). Figure 10.10 plots the points of E23(1,1); note that the points, with

one exception, are symmetric about y = 11.5.

Table 10.1. Points on the Elliptic Curve E23(1,1)

(0, 1) (6, 4) (12, 19)

(0, 22) (6, 19) (13, 7)

(1, 7) (7, 11) (13, 16)

(1, 16) (7, 12) (17, 3)

(3, 10) (9, 7) (17, 20)

(3, 13) (9, 16) (18, 3)

(4, 0) (11, 3) (18, 20)

(5, 4) (11, 20) (19, 5)

(5, 19) (12, 4) (19, 18)

Figure 10.10. The Elliptic Curve E23 (1, 1)

(This item is displayed on page 307 in the print version)

It can be shown that a finite abelian group can be defined based on the set Ep(a,

b) provided that (x
3

+ ax + b) mod p has no repeated factors. This is
equivalent to the condition

Equation 10-6

Note that Equation (10.6) has the same form as Equation (10.2).

The rules for addition over Ep(a, b) correspond to the algebraic technique
described for elliptic curves defined over real number. For all points P, Q

Ep(a, b);

1. P + O = P.

If P = (xP, yP) then P + (xP, yP) = O. The point (xP, yP) is the negative
of P, denoted as P. For example, in E23 (1, 1), for P = (13, 7), we have
P = (13, 7). But 7 mod 23 = 16. Therefore, P = (13, 16), which is also
in E23(1,1).

2. If P = (xP, yQ) and Q = (xQ, yQ) with P ≠Q, then R = P + Q = (xR, yR) is

determined by the following rules:

xR = (λ
2

xP xQ) mod p

yR = (λ (xP xR) yP) mod p

where

3. Multiplication is defined as repeated addition; for example, 4P = P + P

+ P + P.

For example, let P = (3,10) and Q = (9,7) in E23(1,1). Then

xR = (11
2

3 9) mod 23 = 17

yR = (11(3 17) 10) mod 23 = 164 mod 23 = 20

So P + Q = (17, 20). To find 2P,

The last step in the preceding equation involves taking the multiplicative

inverse of 4 in Z23. To confirm, note that (6 x 4) mod 23 = 24 mod 23 = 1.

xR = (6
2

3 3) mod 23 = 30 mod 23 = 7

yR = (6(3 7) 10) mod 23 = (34) mod 23 = 12

and 2P = (7, 12).

For determining the security of various elliptic curve ciphers, it is of some
interest to know the number the number of points in a finite abelian group
defined over an elliptic curve. In the case of the finite group Ep(a,b), the number

of points N is bounded by

Note that the number of points in Ep(a, b) is approximately equal to the number
of elements in Zp, namely p elements.

Elliptic Curves over GF(2
m

)

a finite field GF(2

m
) consists of 2

m
elements, together with addition and

multiplication operations that can be defined over polynomials. For elliptic
curves over GF(2

m
), we use a cubic equation in which the variables and

coefficients all take on values in GF(2
m

), for some number m, and in which
calculations are performed using the rules of arithmetic in GF(2

m
).

It turns out that the form of cubic equation appropriate for cryptographic

applications for elliptic curves is somewhat different for GF(2
m

) than for Zp.
The form is

Equation 10-7

where it is understood that the variables x and y and the coefficients a and b
are elements of GF(2

m
) of and that calculations are performed in GF(2

m
).

Now consider the set E2
m

(a, b) consisting of all pairs of integers (x, y) that
satisfy Equation (10.7), together with a point at infinity O.

For example, let us use the finite field GF(2
4
) with the irreducible

polynomial f(x) = x
4

+ x + 1. This yields a generator that satisfies f(g) = 0, with

a value of g
4

= g + 1, or in binary 0010. We can develop the powers of g as
follows:

g
0

= 0001 g
4

= 0011 g
8

= 0101 g
12

= 1111

g
1

= 0010 g
5

= 0110 g
9

= 1010 g
13

= 1101

g
2

= 0100 g
6

= 1100 g
10

= 0111 g
14

= 1001

g
3

= 1000 g
7

= 1011 g
11

= 1110 g
15

= 0001

For example, g
5

= (g
4
)(g) = g

2
+ g = 0110.

Now consider the elliptic curve y
2

+ xy = x
3

+ g
4
x

2
+ 1. In this case a = g

4

and b = g
0

= 1. One point that satisfies this equation is (g
5
, g

3
):

(g
3
)
2

+ (g
5
)(g

3
) = (g

5
)
3

+ (g
4
)(g

5
)

2
+ 1

g
6

+ g
8

= g
15

+ g
14

+ 1

1100 + 0101 = 0001 + 1001 + 0001

1001 = 1001

Table 10.2 lists the points (other than O) that are part of E2
4
(g

4
, 1). Figure

10.11 plots the points of E2
4
(g

4
, 1).

Table 10.2. Points on the Elliptic Curve E2
4

(g
4
, 1)

(0, 1) (g
5
, g

3
) (g

9
, g

13
)

(1, g
6
) (g

5
, g

11
) (g

10
, g)

(1, g
13

) g
6
, g

8
) (g

10
, g

8
)

(g
3
, g

8
) (g

6
, g

14
) (g

12
,0)

Table 10.2. Points on the Elliptic Curve E2
4

(g
4
, 1)

(0, 1) (g
5
, g

3
) (g

9
, g

13
)

(g
3
, g

13
) (g

9
, g

10
) (g

12
, g

12
)

Figure 10.11. The Elliptic Curve E2
4
(g

4
, 1)

It can be shown that a finite abelian group can be defined based on the set

E2m(a, b), provided that b ≠0. The rules for addition can be stated as follows.

For all points P, Q ≠E2
m

(a, b):

1. P + O = P.

If P = (xP, yP), then P + (xP, xp + yP) = O. The point (xP, xP + yP) is the
negative of P, denoted as P.

2. If P = (xP, yP) and Q = (xQ, yQ) with P ≠ Q and P ≠ Q, then R = P + Q

= (xR, yR) is determined by the following rules:

xR = λ2
+ λ + xP + xQ + a

yR = λ (xP + xR) + xR + yP

where

3. If = (xP, yP) then R = 2P = (xR, yR) is determined by the following
rules:

where

Elliptic Curve Cryptography

The addition operation in ECC is the counterpart of modular multiplication

in RSA, and multiple additions are the counterpart of modular

exponentiation. To form a cryptographic system using elliptic curves, we

need to find a "hard problem" corresponding to factoring the product of two

primes or taking the discrete logarithm.

Consider the equation Q = kP where Q, P Ep(a, b) and k < p. It is relatively

easy to calculate Q given k and P, but it is relatively hard to determine k given
Q and P. This is called the discrete logarithm problem for elliptic curves.

Consider the group E23(9, 17). This is the group defined by the equation y
2

mod 23 = (x3 + 9x + 17) mod 23. What is the discrete logarithm k of Q = (4,

5) to the base P = (16.5)? The brute-force method is to compute multiples of

P until Q is found.

Thus

P = (16, 5); 2P = (20, 20); 3P = (14, 14); 4P = (19, 20); 5P = (13, 10); 6P =

(7, 3); 7P = (8, 7); 8P (12, 17); 9P = (4, 5).

Because 9P = (4, 5) = Q, the discrete logarithm Q = (4, 5) to the base P =

(16, 5) is k = 9. In a real application, k would be so large as to make the

brute-force approach infeasible.

In the remainder of this section, we show two approaches to ECC that give

the flavor of this technique.

Analog of Diffie-Hellman Key Exchange

Key exchange using elliptic curves can be done in the following manner.
First pick a large integer q, which is either a prime number p or an integer of

the form 2
m

and elliptic curve parameters a and b for Equation (10.5) or
Equation (10.7). This defines the elliptic group of points Eq(a, b). Next, pick

a base point G = (x1, y1) in Ep(a, b) whose order is a very large value n. The

order n of a point G on an elliptic curve is the smallest positive integer n

such that nG = O. Eq(a, b) and G are parameters of the cryptosystem known
to all participants.

A key exchange between users A and B can be accomplished as follows

(Figure 10.12):

1. A selects an integer nA less than n. This is A's private key. A then

generates a public key PA = nA x G; the public key is a point in Eq(a,

b).

2. B similarly selects a private key nB and computes a public key PB.

3. A generates the secret key K = nA x PB. B generates the secret key K =
nB x PA.

Figure 10.12. ECC Diffie-Hellman Key Exchange

The two calculations in step 3 produce the same result because

nA x PB = nA x (nB x G) = nB x (nA x G) = nB x PA

To break this scheme, an attacker would need to be able to compute k given

G and kG, which is assumed hard.

As an example, take p = 211; Ep(0, 4), which is equivalent to the curve y
2

=

x
3

4; and G = (2, 2). One can calculate that 240G = O. A's private key is nA =
121, so A's public key is PA = 121(2, 2) = (115, 48). B's private key is nB =
203, so B's public key is 203(2, 2) = (130, 203). The shared secret key is

121(130, 203) = 203(115, 48) = (161, 69).

Note that the secret key is a pair of numbers. If this key is to be used as a

session key for conventional encryption, then a single number must be

generated. We could simply use the x coordinates or some simple function

of the x coordinate.

Elliptic Curve Encryption/Decryption

Several approaches to encryption/decryption using elliptic curves have been

analyzed in the literature. In this subsection we look at perhaps the simplest.

The first task in this system is to encode the plaintext message m to be sent

as an x-y point Pm. It is the point Pm that will be encrypted as a ciphertext

and subsequently decrypted. Note that we cannot simply encode the message

as the x or y coordinate of a point, because not all such coordinates are in Eq(a,

b); for example, see Table 10.1. Again, there are several approaches to this

encoding, which we will not address here, but suffice it to say that there are

relatively straightforward techniques that can be used.

As with the key exchange system, an encryption/decryption system requires a

point G and an elliptic group Eq(a, b) as parameters. Each user A selects a

private key nA and generates a public key PA = nA x G.

To encrypt and send a message Pm to B, A chooses a random positive integer
k and produces the ciphertext Cm consisting of the pair of points:

Cm = {kG, Pm + kPB}

Note that A has used B's public key PB. To decrypt the ciphertext, B
multiplies the first point in the pair by B's secret key and subtracts the result
from the second point:

Pm + kPB nB(kG) = Pm + k(nBG) nB(kG) = Pm

A has masked the message Pm by adding kPB to it. Nobody but A knows the

value of k, so even though PB is a public key, nobody can remove the mask

kPB. However, A also includes a "clue," which is enough to remove the

mask if one knows the private key nB. For an attacker to recover the

message, the attacker would have to compute k given G and kG, which is
assumed hard.

As an example of the encryption process (taken from [KOBL94]), take p =
751; Ep(1, 188), which is equivalent to the curve y

2
= x

3
x + 188; and G = (0,

376). Suppose that A wishes to send a message to B that is encoded in the
elliptic point Pm = (562, 201) and that A selects the random number k = 386.
B's public key is PB = (201, 5). We have 386(0, 376) = (676, 558), and (562,
201) + 386(201, 5) = (385, 328). Thus A sends the cipher text {(676, 558),
(385, 328)}.

Security of Elliptic Curve Cryptography

The security of ECC depends on how difficult it is to determine k given kP and

P. This is referred to as the elliptic curve logarithm problem. The fastest known

technique for taking the elliptic curve logarithm is known as the Pollard rho

method. Table 10.3 compares various algorithms by showing comparable

key sizes in terms of computational effort for cryptanalysis. As can be seen, a

considerably smaller key size can be used for ECC compared to RSA.

Furthermore, for equal key lengths, the computational effort required for

ECC and RSA is comparable . Thus, there is a computational advantage to

using ECC with a shorter key length than a comparably secure RSA.

Table 10.3. Comparable Key Sizes in Terms of Computational Effort for Cryptanalysis

Symmetric Scheme (key size

in bits)

ECC-Based Scheme (size of

n in bits)

RSA/DSA (modulus size

in bits)

56 112 512

Table 10.3. Comparable Key Sizes in Terms of Computational Effort for Cryptanalysis

Symmetric Scheme (key size

in bits)

ECC-Based Scheme (size of

n in bits)

RSA/DSA (modulus size

in bits)

80 160 1024

112 224 2048

128 256 3072

92 384 7680

256 512 15360

Source: Certicom

